Radioscopic and Ultrasonic Data Fusion Via the Evidence Theory. Fusion de Données Radioscopiques et Ultrasonores via la Théoriede L'Évidence

Radioscopic and Ultrasonic Data Fusion Via the Evidence Theory

Fusion de Données Radioscopiques et Ultrasonores via la Théoriede L'Évidence

Anne Dromigny-Badin Solange Rossato  Yue Min Zhu 

CREATIS, UMR CNRS (#5515), et affilié à l'INSERM INSA 502 69621 Villeurbanne Cedex

Page: 
499-510
|
Received: 
2 December 1996
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A data fusion method, based on the the Dempster-Shafer evidence theory, is presented that aims at improving the reliability of taking a decision by simultaneously exploiting complementary information from two different sources . Within this framework, both discrete and continuous hypotheses are studied in a systematic manner. The data fusion method is applied to problems of improving the reliability of Non Destructive Testing (NDT) using real-time x-ray (RX)radioscopy and ultrasounds (US).It is illustrated with the aid of radioscopic and ultrasonic data corresponding to the same test objects . The results of detection, identification and quantification of defects are discussed and compared in detail, in both monomodality and multimodality. 

Résumé 

A data fusion method, based on the the Dempster-Shafer evidence theory, is presented that aims at improving the reliability of taking a decision by simultaneously exploiting complementary information from two different sources . Within this framework, both discrete and continuous hypotheses are studied in a systematic manner. The data fusion method is applied to problems of improving the reliability of Non Destructive Testing (NDT) using real-time x-ray (RX)radioscopy and ultrasounds (US).It is illustrated with the aid of radioscopic and ultrasonic data corresponding to the same test objects . The results of detection, identification and quantification of defects are discussed and compared in detail, in both monomodality and multimodality.

Keywords: 

Data fusion, Dempster-Shafer evidence theory, non destructive testing, real-time x-ray radioscopy, ultrasonic imaging .

Mots clés 

Fusion de données, théorie de l'évidence de Dempster-Shafer, contrôle non destructif, radioscopie numérique, contrôle ultrasonore. 

1. Introduction
2. Théorie de Dempster-Shafer
3. Adaptation de la Méthode à la Quantification de Paramètres Continus
4. Application sur des Piècestest
5. Conclusion
Remerciements
  References

[Appr-91] A. Appriou, « Probabilités et incertitudes en fusion multicapteurs », Revue Scientifique et Technique de la Défense, Vol. 11,No. 1, p. 27-40, 1991. 

[Appr-93] A. Appriou. « Formulation et traitement de l'incertain en analyse multisenseurs », 14eme Colloque GRETSI,p. 951-954, Sept 1993.

[Bloc-96] I. Bloch, « Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical imaging taking partial volume effect into account », Pattern Recognition Letters, Vol. 17, No. 8, p. 905-919, July 1996. 

[Bogl-87] P. Bugler, « Shafer-Dempster Reasoning with applications to Multisensor Target Identification Systems », IEEE Transactions on Systems, Man and Cybernetics, Vol. 17, No. 6, p. 968-977, Dec 1987. 

[Case-92] W.F. Caselton, W. Luo, « Decision making with imprecise probabilities: Dempster-Shafer Theory and Application », Water RessourcesResearch, Vol.28, No. 12, p. 3071-3083, Dec 1992.

[Clar-90] J.J. Clark, A.L. Yville, « Data Fusion for Sensory Information Processing Systems », Kluwer Academic Publishers, Boston, 1990.

[Demp-68] A.P. Dempster, « A Generalization of Bayesian Inference », Journal of the Royal Statistical Society, Vol. 30, p. 205-247, 1968.

[Deno-95] T. Denoeux, « A k-nearest neigbour classification rule based on Dempster-Shafer theory >>, IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, No. 05, 1995. 

[Drom-94] A. Dromigny, «Etude des différentestechniques de fusion d'images - Applicationaux images cardiaques parrésonance magnétique », Mémoire de DEA, INSA- Lyon, 50 p., Juillet 1994. 

[Geor-94] B. Georgel, B. Lavayssiere,« Fusion de données; un nouveau concept en CND », 6e Conf, Européenne sur les CND, Nice, 24-28 octobre, p. 31-35, 1994. 

[Gros-94] X.E.Gros, P . Strachan, D. Lowden, I. Edwards, «NDT Data Fusion", 6e Conf.Européenne sur les CND, Nice, 24-28octobre,p. 355-359, 1994. 

[Gros-95] X.E. Gros,P. Strachan, D. Lowden, « Theory and Implementation of NDT Data Fusion », Results on Non Destructive Evaluation, Vol.6,Springer Verlag,p. 227- 236, 1995. 

[Henk-881 S. Henkind, M.C. Harrison, « An Ananlysis of Four Uncertainty Calculi », IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, No. 5, p. 700-714, Sept1988. 

[Joha-94] K. Johannsen, S. Heine, C. Nockermann, « New Data Fusion Techniques for the Reliability Enhancement of NDT », 6e Conf. Européenne sur les CND, Nice, 24-28 octobre,p. 361-365, 1994. 

[Kaft-95] V. Kaftandjian, « Reconnaissance automatique des défauts dans les produits métalliques par radioscopie numérique », Thèse de l'INSA Lyon, 1995. 

[Lee-90] R.H. Lee, R. Leahy, «Multi-SpectralClassification of MR Images Using Sensor Fusion Approaches », SPIEMedical Imaging IV : Image Processing, Vol. 1233, p. 149-157, 1990. 

[Luo-89] R.C. Luo, M.G. Kay, «Multisensor Integration and Fusion in Intelligent Systems », IEEE Transactions on Systems, Man and Cybernetics, Vol. 19, No. 5, p. 901-931, Oct 1989. 

[Ray-92] C. Ray Smith, « A Bayesian Approach to multisensor fusion », SPIE, Vol. 1699, p. 285-299, 1992.

[Shaf-76] G. Shafer, « A mathematical theory of evidence », Princeton University Press. 1976. [Smet-94] P. Smets, R. Kennes, « The Transferable Belief Model », Artificial Intelligence,Vol.66, p. 191-243, 1994. 

[Sure-941 F. Sureda, I. Bloch, C. Pellot, A. Herment, « Reconstruction 2D de vaisseaux sanguins par fusion de données à partir d'images angiographiques et échographiques », Traitementdu Signal,Vol. 11, No. 6, p. 525-540, 1994. 

[Zade-88] L.A. Zadeh, « Fuzzy logic », IEEE Computer Magazine, p . 88-93. avril 1988.

[Zhu-901 Y.M. Zhu, D. Babot, G. Peix, « A quantitative comparison between linear x-ray sensitive array and image-intensifier systems », NDT International, Vol. 23, No. 4, p. 214-220, Aug 1990.