Random matrix theory tutorial. Introduction to deterministic equivalents

Random matrix theory tutorial. Introduction to deterministic equivalents

Axel Müller Mérouane Debbah 

Mathematical and Algorithmic Sciences Lab France Research Center, Huawei Technologies Co. Ltd. Arcs de Seine Bâtiment A, 20 Quai du Point du Jour 92100 Boulogne-Billancourt, France

Corresponding Author Email: 
{axel.mueller,merouane.debbah}@huawei.com
Page: 
223-248
|
DOI: 
https://doi.org/10.3166/TS.33.223-248
Received: 
8 April 2015
| |
Accepted: 
24 December 2015
| | Citation
Abstract: 

In the following, we provide a tutorial on the practical application of random matrix theory (RMT) in communication problems, in order to facilitate the utilization of the analytic RMT approach for interested researchers. To this end, we first state the necessary basic theoreti- cal concepts, lemmas and tools from RMT. After this, we build intuition, confidence, and insight into RMT concepts and their applications, by putting the introduced theoretical results into a tutorial like context. To familiarize the reader with the introduced tools, we rely on an example of a step by step derivation of the deterministic equivalent for a non-trivial rate problem. Thus, we provide the theory needed to soundly use the framework of RMT in the design of future large scale (w.r.t. the numbers of users, base stations and antennas) communication networks.

Keywords: 

random matrix theory, deterministic equivalents, MIMO, telecommunication.

Extended abstract
1. Introduction
2. La transformée de Stieltjes
3. Equivalents déterministes
4. Outils et lemmes communs pour la théorie des matrices aléatoires
5. Application de la théorie des matrices aléatoires aux télécommunications
6. Conclusion
Remerciements
  References

Bai Z. D., Silverstein J. W. (1998a). No Eigenvalues outside the Support of the Limiting Spectral Distribution of Large-dimensional Random Matrices. The Annals of Applied Probability, vol. 26, p. 316-345.

Bai Z. D., Silverstein J. W. (1998b, janvier). No Eigenvalues Outside the Support of the Limiting Spectral Distribution of Large Dimensional Sample Covariance Matrices. Annals of Probability, vol. 26, no 1, p. 316-345.

Bai Z. D., Silverstein J. W. (2007). On the Signal-to-Interference Ratio of CDMA Systems in Wireless Communications. The Annals of Applied Probability, vol. 17, p. 81-101.

Bai Z. D., Silverstein J. W. (2009). Spectral Analysis of Large Dimensional Random Matrices (2nd edition éd.). Springer Series in Statistics.

Billingsley P. (1995). Probability and Measure (Third éd.). Hoboken, NJ, John Wiley & Sons, Inc.

Couillet R. (2010). Application of Random Matrix Theory to Future Wireless Flexible Networks. Thèse de doctorat non publiée, Supélec.

Couillet R., Debbah M. (2009). Uplink Capacity of Self-Organizing Clustered Orthogonal CDMA Networks in Flat Fading Channels. In Information theory workshop, 2009. itw 2009. ieee. Taormina, Sicily.

Couillet R., Debbah M. (2011). Random Matrix Methods for Wireless Communications. New York, NY, USA, Cambridge University Press. (First Edition)

Couillet R., Debbah M., Silverstein J. W. (2011). A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels. IEEE Transactions on Information Theory, vol. 57, no 6, p. 3493–3514.

Dohler M. (2003). Virtual Antenna Arrays. Thèse de doctorat non publiée, University of London, Strand, London WC2R 2LS.

Dupuy F., Loubaton P. (2010). On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach. IEEE Transactions on Infor- mation Theory. Consulté sur http://arxiv.org/abs/1001.3102

Hachem W., Khorunzhy O., Loubaton P., Najim J., Pastur L. A. (2008, Sept.). A New Approach for Capacity Analysis of Large Dimensional Multi-Antenna Channels. IEEE Transactions on Information Theory, vol. 54, no 9, p. 3987-4004.

Hachem W., Loubaton P., Najim J. (2007). Deterministic Equivalents for Certain Functionals of Large Random Matrices. Annals of Applied Probability, vol. 17, no 3, p. 875-930.

Hachem W., Loubaton P., Najim J. (2008, décembre). A CLT for Information Theoretic Sta- tistics of Gram Random Matrices with a Given Variance Profile. Annals of Probability, vol. 18, no 6, p. 2071-2130.

Henderson H. V., Searle S. R. (1981). On deriving the inverse of a sum of matrices. Siam Review, vol. 23, no 1, p. 53–60.

Hoydis J. (2010). Channel Modeling for Cooperative Multi-Cell Systems. (Unpublished Lecture Notes)

Hoydis J. (2012). Random Matrix Methods for Advanced Communication Systems. Thèse de doctorat non publiée, Supélec, Alcatel-Lucent Chair on Flexible Radio.

Hoydis J., Kobayashi M., Debbah M. (2011). Optimal Channel Training in Uplink Network MIMO Systems. IEEE Transactions on Signal Processing, vol. 59, no 6, p. 2824-2833.

Kammoun A., Kharouf M., Hachem W., Najim J. (2009, Nov.). A Central Limit Theorem for the SINR at the LMMSE Estimator Output for Large-Dimensional Signals. IEEE Transactions on Information Theory, vol. 55, no 11, p. 5048–5063.

Krein M. K., Nudelman A. A. (1977). The Markov Moment Problem and Extremal Problems. Providence, RI, USA, American Mathematical Society.

Marc˘enko V. A., Pastur L. A.   (1967, avril).   Distributions of Eigenvalues for Some Sets of Random Matrices. Math USSR-Sbornik, vol. 1, no 4, p. 457-483.

Müller A. (2014). Random Matrix Analysis of Future Multi Cell MU-MIMO Networks. Thèse de doctorat non publiée, SUPÉLEC.

Pastur L. A. (1999). A Simple Approach to Global Regime of Random Matrix Theory. In Mathematical Results in Statistical Mechanics, p. 429-454. World Scientific Publishing.

Pastur L. A., Shcherbina M. (2011). Eigenvalue distribution of large random matrices no 171. American Mathematical Soc.

Peacock M. J. M., Collings I. B., Honig M. L. (2008). Eigenvalue Distributions of Sums and Products of Large Random Matrices via Incremental Matrix Expansions. IEEE Transac- tions on Information Theory, vol. 54, no 5, p. 2123-2138.

Rubio F., Mestre X., Hachem W. (2012). A CLT on the SNR of Diagonally Loaded MVDR Filters. Signal Processing, IEEE Transactions on, vol. 60, no 8, p. 4178–4195.

Silverstein J. W., Bai Z. D. (1995).  On the Empirical Distribution of Eigenvalues of a Class  of Large Dimensional Random Matrices. Journal of Multivariate Analysis, vol. 54, no 2,  p. 175-192.

Tao T. (2012). Topics in Random Matrix Theory (vol. 132). American Mathematical Soc. Telatar E.  (1999).  Capacity of Multi-antenna Gaussian Channels.  European Transactions on Telecommunications, vol. 10, no  6, p. 585–595.  (Also, 1995 in Technical Memorandum, Bell Laboratories, Lucent Technologies)

Tse D. N. C., Hanly S. V. (1999, février). Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity. IEEE Transactions on Information Theory, vol. 45, no 2, p. 641-657.

Tulino A., Verdú S. (2004). Random Matrix Theory and Wireless Communications. Founda- tions and Trends in Communications and Information Theory, vol. 1, no 1, p. 1-182.

Vallet P., Loubaton P., Mestre X. (2010). Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case. IEEE Transactions on Information Theory. Consulté sur http://arxiv.org/abs/1002.3234

Van der Vaart A. W. (2000). Asymptotic Statistics. New York, Cambridge University Press. Verdú S., Shamai S. (1999, février). Spectral Efficiency of CDMA with Random Spreading. IEEE Transactions on Information Theory, vol. 45, no 2, p. 622-640.

Wagner S., Couillet R., Debbah M., Slock D. (2012, July). Large System Analysis of Linear Precoding in MISO Broadcast Channels with Limited Feedback. IEEE Transactions on Information Theory, vol. 58, no 7, p. 4509-4537.

Wigner E. (1958, mars). On the Distribution of Roots of Certain Symmetric Matrices. The Annals of Mathematics, vol. 67, no 2, p. 325-327.

Yates R. D. (1995). A Framework for Uplink Power Control in Cellular Radio Systems. IEEE Journal on Selected Areas in Communications, vol. 13, no 7, p. 1341–1347.