Stability Results for a Class of Nonlinear Caputo Volterra-Fredholm System: Physics and Engineering Application

Stability Results for a Class of Nonlinear Caputo Volterra-Fredholm System: Physics and Engineering Application

Khawlah Hashim Hussain

Department of Mechanical Technology, Basra Technical Institute, Southern Technical University, Al-Basrah 61004, Iraq

Corresponding Author Email: 
khawlah.hussain@stu.edu.iq
Page: 
681-686
|
DOI: 
https://doi.org/10.18280/mmep.100239
Received: 
14 December 2022
|
Revised: 
28 January 2023
|
Accepted: 
3 February 2023
|
Available online: 
28 April 2023
| Citation

© 2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

This study intends to provide and prove a novel stability theorem for the non-linear Volterra-Fredholm integro-differential equation with Caputo fractional derivative using the weighted space method and fixed-point technique. Specifically, the study investigates the H-U-R stability and semi-U-H-R stability results. Eventually, the investigation discusses an example of the capability of this method.

Keywords: 

Caputo fractional derivative, Volterra-Fredholm system, stability, Mittag-Leffler kernel

1. Introduction

As a result of their frequent appearance in a wide range of engineering and scientific disciplines, systems of fractional differential and integral equations are currently the focus of active research [1]. A system of integral-differential equations must therefore have approximate solutions. Besides, fractional derivatives provide a powerful tool for many types of physical modeling, such as stochastic dynamical systems, electrodynamics of complex medium, plasma physics, signal processing, economics, and so on researches [2, 3].

Budak et al. [4] reported that the stability issue of differential equations solutions presented. One of the most essential topics in differential equation theory is Ulam-Hyers stability. Because of the broad scope of fractional calculus, many authors focused on the study of stability for fractional differential equations [5-8]. In the same regard, fractional integro-differential equations also drew the attention of several authors [9-16].

Chalishajar and Kumar [5] enhanced a new direction of research via studied the existence and uniqueness of the solutions as well as discussed two types of stability. In same regard, Khan et al. [7] used Perov's fixed point theorem and generalized metric space to derive some relaxed requirements for the uniqueness of positive solutions to the aforementioned problem. Dong et al. [9] investigated the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the random fractional integro-differential equation using the fixed point theorem.

The stability theory of fractional integro-differential equations is a significant branch of fractional calculus. The Ulam-type stability of an integro-differential equation implies that we can find the exact solution to the problem near an approximate solution. Several varieties of Ulam-type stability for nonlinear fractional integro-differential equations have been studied in recent decades [5, 7, 15-17].

Recently, Sevgin and Sevli [12] examined the U-H stability and the U-H-R stability in formulations of fixed-point techniques for the nonlinear Volterra equation:

$\Delta^{\prime}(v)=A(v, \Delta(v))+\int_0^v \Phi(v, \varsigma, \Delta(\varsigma)) d \varsigma$                    (1)

Vu and Van Hoa [15] addressed the nonlinear IVP of the Volterra equations, and they used the successive approximation approach to explain the U-H and U-H-R stability of the following equations.

$\Delta^{\prime}(v)=A(v, \Delta(v))+\int_a^v \Phi(v, \varsigma, \Delta(\varsigma)) d \varsigma, v \in[a, b]$                       (2)

$\Delta(a)=\Delta_0$                     (3)

Sousa and De Oliveira [18, 19] introduced U-H stability for the Volterra -Hilfer fractional problem using the Banach fixed-point approach.

${ }^H D_{0+}^{\alpha, \beta ; \psi \psi} \Delta(v)=A(v, \Delta(v))+\int_0^v \Phi(v, \varsigma, \Delta(\varsigma)) d \varsigma$                     (4)

where, ${ }^H D_{0+}^{\alpha, \beta ; \psi}$ is the ψ-Hilfer fractional derivative.

Herein, the current study is interested in the following Caputo fractional nonlinear Volterra-Fredholm integro-differential problem:

$\Theta^{\prime}(v)+{ }^c D_{0+}^\alpha \Theta(v)=g(v, \Theta(v))+\int_0^v \Upsilon(v, \varsigma, \Theta(\varsigma)) d \varsigma+\int_0^1 \Psi(v, \varsigma, \Theta(\varsigma)) d \varsigma, v \in[0,1]$            (5)

$\Theta(0)=\eta$               (6)

where, $\Theta \in C^1[0,1], 0<\alpha<1, \Upsilon, \Psi:[0,1] \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ and $g:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions.

Motivated by the above studies, the current study will investigate another problem of stability theorem for the non-linear Volterra-Fredholm integro-differential equation with Caputo fractional derivative using the weighted space method and fixed-point technique.

Therefore, the aim of this work is to investigate the H-U, H-U-R, and semi-U-H-R stability for the system (5) under some new standards.

2. Preliminaries

In this segment, the study introduces some useful preliminaries for fractional derivatives [20, 21]. Moreover, we recall concepts of stability for Eq. (5).

Let:

$\rho(\Theta, \omega)=\sup _{v \in[0,1]} \frac{|\Theta(v)-\omega(v)|}{\xi(v)}, \Theta, \omega \in C^1[0,1]$                      (7)

The weighted metric, where function $\xi$  is a continuous non-decreasing defined as $\zeta:[0,1] \rightarrow(0,+\infty)$ then there is $\xi \in[0,1)$, satisfies:

$\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \varsigma(\varsigma) d \varsigma \leq \xi \zeta(v)$                    (8)

Obviously, (C1[0,1], ρ) is a complete metric space.

Definition 2.1 [20, 21] Let $f:(0,+\infty) \rightarrow \mathbb{R}$  be integrable function, the R-L fractional integral is given by:

$I_{0+}^\alpha f(\Lambda)=\frac{1}{\Gamma(\alpha)} \int_0^{\Lambda}(\Lambda-v)^{\alpha-1} f(v) d v, \Lambda>0,0<\alpha<1$                   (9)

Definition 2.2 [20, 21] The left Caputo fractional derivative of differentiable function f(υ) is given by:

${ }^c D_{0+}^\alpha f(\Lambda)=I_{0+}^{1-\alpha} f^{\prime}(\Lambda)=\frac{1}{\Gamma(1-\alpha)} \int_0^{\Lambda}(\Lambda-v)^{-\alpha} f^{\prime}(v) d v, 0<\alpha<1$                      (10)

Definition 2.3 [20, 21] The function of Mittag-Leffler is given by:

$E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k \alpha+\beta)}, \beta, \alpha, z \in \mathbb{C}, \operatorname{Re}(\beta)>0, \operatorname{Re}(\alpha)>0$                  (11)

The Laplace transform of the Mittag-Leffler and Caputo derivative given by:

$\mathcal{L}\left\{v^{\beta-1} E_{\alpha, \beta}\left( \pm a v^\alpha\right)\right\}(\varsigma)=\frac{\varsigma^{\alpha-\beta}}{\left(\varsigma^\alpha \mp a\right)}, \operatorname{Re}(\varsigma)>|a|^{\frac{1}{\alpha}}, \operatorname{Re}(\beta)>0, \operatorname{Re}(\alpha)>0, \beta, \alpha \in \mathbb{C}$                          (12)

$\mathcal{L}\left\{v^{\alpha k+\beta-1} E_{\alpha, \beta}^{(k)}\left( \pm a v^\alpha\right)\right\}(\varsigma)=\frac{k ! ^{\alpha-\beta}}{\left(\varsigma^\alpha \mp a\right)^{k+1}}, \operatorname{Re}(\varsigma)>|a|^{\frac{1}{\alpha}}, \alpha, \beta \in \mathbb{C}$,                     (13)

where:

$E_{\alpha, \beta}^{(k)}(y)=\frac{d^k}{d y^k} E_{\alpha, \beta}(y)=\sum_{j=0}^{\infty} \frac{(j+k) ! y^j}{j ! \Gamma(\alpha j+\alpha k+\beta)}, k=0,1,2, \ldots$,                      (14)

and

$\left.\mathcal{L}^c D_{0+}^\alpha f(v)\right\}(\varsigma)=\varsigma^\alpha \tilde{f}(\varsigma)-\varsigma^{\alpha-1} f(0), 0<\alpha<1$,                       (15)

respectively [20, 21].

Definition 2.4 [20, 21] If Λ(v) is a given differential function, satisfying:

$\left|\Lambda^{\prime}(v)+{ }^c D_{0+}^\alpha \Lambda(v)-g(v, \Lambda(v))-\int_0^v \Upsilon(v, \varsigma, \Lambda(\varsigma)) d \varsigma-\int_0^1 \Psi(v, \varsigma, \Lambda(\varsigma)) d \varsigma\right| \leq \theta, v \in[0,1], \theta>0$                        (16)

There is C>0 and Θ(v) is a solution of the system in Eq. (5), where:

$|\Lambda(v)-\theta(v)| \leq C \theta, v \in[0,1]$                     (17)

Then, the system in Eq. (5) has the U-H stability.

If Λ(v) satisfies (16) there is a solution Θ(v) of the system (5) and C>0, such that:

$|\Lambda(v)-\Theta(v)| \leq C \phi(v), v \in[0,1]$                     (18)

where, the function φ is continuous nonnegative defined as ϕ:[0,1]→(0,+∞), then the system (1) has the semi-U-H-R stability.

If ϕ:[0,1]→(0,+∞) is a continuous and Λ(v) satisfying:

$\left|\Lambda^{\prime}(v)+{ }^c D_{0+}^\alpha \Lambda(v)-g(v, \Lambda(v))-\int_0^v \Upsilon(v, \varsigma, \Lambda(\varsigma)) d \varsigma-\int_0^1 \Psi(v, \varsigma, \Lambda(\varsigma))\right| \leq \varphi(v)$                         (19)

There is C>0 and Θ(v) is a solution of the system (5), where:

$|\Lambda(v)-\Theta(v)|<-C \varphi(v), v \in[0,1]$                        (20)

Then, the system in Eq. (1) has the U-H-R stability.

3. Stability Results

The study will investigate in this segment the stabilities of U-H-R, semi-U-H-R and U-H for the system (1) in C1[0,1].

3.1 U-H-R stability for the system in Eq. (5)

Here, the study will investigate the equivalent integral equation of the system (5) and study the U-H-R stability for the system (5) in (C1[0,1], ρ).

Lemma 3.1 Assume that$f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, and $0<\alpha<1, \Theta(v) \in C^1[0,1]$, the unique solution of the following equation.

$\Theta^{\prime}(v)+{ }^c D_{0+}^\alpha \Theta(v)=f(v), \Theta(0)=\eta$                   (21)

is given by:

$\Theta(v)=\eta+\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) f(\varsigma) d \varsigma$                     (22)

Proof: The Laplace transforms of both $\Theta^{\prime}(v)$ and ${ }^c D_{0+}^\alpha \Theta(v)$ exist for $\Theta(v) \in C^1[0,1]$, applying the Laplace transform on two sides of Eq. (22). Then,

$s \widetilde{\Theta}(\varsigma)-\eta+\varsigma^\alpha \widetilde{\Theta}(\varsigma)-\varsigma^{\alpha-1} \Theta(0)=f(\varsigma)$                  (23)

$\widetilde{\Theta}(\varsigma)=\frac{1}{\varsigma} \eta+\frac{1}{\varsigma^\alpha+\varsigma} \tilde{f}(\varsigma)$                      (24)

It can take the inverse Laplace transform on the both sides of Eq. (23), then get:

$\Theta(v)=\eta+\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) f(\varsigma) d \varsigma$                     (25)

Then, Θ(v) satisfies Eq. (21) $\Leftrightarrow \Theta(v)$ satisfies Eq. (23). As a result, Eq. (23) is the equivalent integral equation of Eq. (21).

Theorem 3.2 Assume that a function ζ is continuous non-decreasing defined as ζ: [0,1] → (0,∞), and there exists ξ ∈ [0, 1), satisfying:

$\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \zeta(\varsigma) d \varsigma \leq \xi \zeta(v)$                    (26)

The following hypotheses are introduced:

[D1] Assume that a continuous function g defined as g: $[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$, such that:

$\left|g\left(v, h_1\right)-g\left(v, h_2\right)\right| \leq \epsilon_1\left|h_1-h_2\right|, v \in[0,1], h_1, h_2 \in \mathbb{R}$                     (27)

with є1>0.

[D2] Suppose that the kernels $\Upsilon, \Psi:[0,1] \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying:

$\left|\Upsilon\left(v, \varsigma, h_1\right)-\Upsilon\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^k\left|h_1-h_2\right|, v, \varsigma \in[0,1], h_1, h_2 \in \mathbb{R}$                       (28)

$\left|\Psi\left(v, \varsigma, h_1\right)-\Psi\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^h\left|h_1-h_2\right|$                 (29)

with $\epsilon_2^k, \epsilon_2^h>0$. If $\Lambda \in C^1[0,1]$ satisfies:

$\left|\Lambda^{\prime}(v)+{ }^c D_{0+}^\alpha \Lambda(v)-g(v, \Lambda(v))-\int_0^v \Upsilon(v, \varsigma, \Lambda(\varsigma)) d \varsigma-\int_0^1 \Psi(v, \varsigma, \Lambda(\varsigma)) d \varsigma\right| \leq \zeta(v), v \in[0,1]$                    (30)

and if:

$\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi<1$                   (31)

Then we have Θ(v) is a solution of the system (5) satisfies:

$|\Lambda(v)-\Theta(v)| \leq \frac{\xi \zeta(v)}{1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi}, v \in[0,1]$                   (32)

Proof: Applying Lemma 3.1, the equivalent equation of Eq. (5) is given by:

$\Theta(v)=\eta+\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)\left[g(\varsigma, \Theta(\varsigma))+\int_0^{\varsigma} \Upsilon(\varsigma, \tau, \Theta(\tau)) d \tau+\int_0^1 \Psi(s, \tau, \Theta(\tau)) d \tau\right] d \varsigma$                         (33)

Define the operator $\Omega: C^1[0,1] \rightarrow C^1[0,1]$ by:

$\begin{gathered}(\Omega \omega)(v)=\eta+\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) g(\varsigma, \omega(\varsigma)) d \varsigma \\ +\int_0^v \int_0^{\varsigma} E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \Upsilon(\varsigma, \tau, \omega(\tau)) d \tau d \varsigma \\ +\int_0^v \int_0^1 E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \Psi(\varsigma, \tau, \omega(\tau)) d \tau d \varsigma, v \in[0,1], \omega \in C^1[0,1]\end{gathered}$                      (34)

From the hypotheses [D1] and [D2], so Ω is continuous.

Now, we will show that Ω is strictly contractive in (C1[0,1], ρ). By weighted metric ρ definition and Eqns. (26)-(28), for any $\omega, w \in C^1[0,1]$, it can obtain:

$\begin{aligned} \rho(\Omega \omega, \Omega w) \leq & \sup _{v \in[0,1]} \frac{\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)[g(\varsigma, w(\varsigma))-g(s, w(\varsigma))] d \varsigma\right|}{\zeta(v)} \\ & +\sup _{v \in[0,1]} \frac{\left|\int_0^v \int_0^{\varsigma} E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)[\gamma(\varsigma, \tau, \omega(\tau))-\Upsilon(\varsigma, \tau, w(\tau))] d \tau \mathrm{d} \varsigma\right|}{\varsigma(v)} \\ & +\sup _{v \in[0,1]} \frac{\left|\int_0^v \int_0^1 E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)[\Psi(\varsigma, \tau, \omega(\tau))-\Psi(\varsigma, \tau, w(\tau))] d \tau \mathrm{d} \varsigma\right|}{\varsigma(v)} \\ & \leq \epsilon_1 \sup _{v \in[0,1]} \frac{\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)\right| \omega(\varsigma)-w(\varsigma)|d \varsigma|}{\varsigma(v)} \\ & +\epsilon_2^k \sup _{v \in[0,1]} \frac{\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \int_0^{\varsigma}\right| \omega(\tau)-w(\tau)|d \tau d \varsigma|}{\varsigma(v)} \\ & +\epsilon_2^h \sup _{v \in[0,1]} \frac{\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \int_0^1\right| \omega(\tau)-w(\tau)|d \tau d \varsigma|}{\varsigma(v)} \\ & \leq c_1 \xi \rho(\omega, w)+c_2^k \xi \rho(\omega, w)+c_2^h \xi(\omega, w)=\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi \rho(\omega, w)\end{aligned}$               (35)

From the hypothesis $\left(\epsilon_1+\epsilon_2^k+\epsilon_h\right) \xi<1$, so $\Omega$ is strictly contractive.

Here, it can assume that $\Lambda(v) \in C^1[0,1]$ satisfies Eq (30). By Eqns. (30), (26) and Lemma 3.1, then:

$\begin{gathered}\mid \Lambda(v)-\eta-\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)\left[g(s, \Lambda(\varsigma))+\int_0^{\varsigma} \Upsilon(\varsigma, \tau, \Lambda(\tau)) d \tau+\int_0^1 \Psi(\varsigma, \tau, \Lambda(\tau)) d \tau \right] \\ d \varsigma \leq\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \zeta(\varsigma) d \varsigma\right| \leq \xi \zeta(v),\end{gathered}$                         (36)

The procedures for proving Eq (36) are the same as for proving Lemma 3.1. From Ω definition and Eq. (36), it can conclude:

$|(\Omega \Lambda)(v)-\Lambda(v)| \leq \xi \zeta(v)$                     (37)

Then, by $\rho$ definition, it get:

$\rho(\Omega \Lambda, \Lambda) \leq \xi<1<\infty$                     (38)

Let $C^*[0,1]=\left\{y \in C^1[0,1]: \rho(\Omega \Lambda, y)<\infty\right\}$. By Banach fixed-point theorem, there is a unique solution $\Theta \in C^*[0,1]$ such that ΩΘ=Θ, that means Θ is a solution of the system (33). Therefore, Θ is the solution of the system (1). Then:

$\rho(\Lambda, \Theta) \leq \frac{1}{1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi} \rho(\Omega \Lambda, \Lambda) \leq \frac{\xi}{1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi}$              (39)

From ρ definition, the Eq. (33) holds. This completes the proof.

3.2 Semi-U-H-R and U-H stabilities for the system (5)

The study will investigate in this segment the stabilities of U-H and semi-U-H-R in C1[0,1] for the system in Eq. (5).

Theorem 3.3 Assume that a function ζ is continuous non-decreasing defined as ζ: [0, 1] → (0, ∞) and there is ξ ∈ [0, 1) satisfying:

$\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \zeta(\varsigma) d \varsigma \leq \xi \zeta(v)$                       (40)

Let $\epsilon_1, \epsilon_2^{\mathrm{k}}, \epsilon_2^{\mathrm{h}}>0$ for $\left(\epsilon_1+\epsilon_2^{\mathrm{k}}+\epsilon_2^{\mathrm{h}}\right) \xi<1$. Assume that $\mathrm{h}:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ and $\Upsilon, \Psi:[0,1] \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying:

$\left\{\begin{array}{c}\left|g\left(v, h_1\right)-g\left(v, h_2\right)\right| \leq \epsilon_1\left|h_1-h_2\right|, v \in[0,1], h_1, h_2 \in \mathbb{R} \\ \left|\Upsilon\left(v, \varsigma, h_1\right)-\Upsilon\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^k\left|h_1-h_2\right|, v, \varsigma \in[0,1], h_1, h_2 \in \mathbb{R} \\ \left|\Psi\left(v, \varsigma, h_1\right)-\Psi\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^h\left|h_1-h_2\right|, v, \varsigma \in[0,1], h_1, h_2 \in \mathbb{R}\end{array}\right.$                      (41)

If $\Lambda \in C^1[0,1]$ satisfies:

$\left|\Lambda^{\prime}(v)+{ }^c D_{0+}^\alpha \Lambda(v)-g(v, \Lambda(v))-\int_0^v \Upsilon(v, \varsigma, \Lambda(\varsigma)) d \varsigma-\int_0^1 \Psi(v, \varsigma, \Lambda(\varsigma)) d \varsigma\right| \leq \theta, v \in[0,1]$                    (42)

with θ>0, thus there is Θ(v) solution of the system (5) satisfies:

$|\Lambda(v)-\Theta(v)| \leq \frac{\theta \zeta(v)}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)}\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|, v \in[0,1]$                     (43)

This means that under above conditions, the system (5) has the semi-U-H-R stability.

Proof. Consider $\Omega: C^1[0,1] \rightarrow C^1[0,1]$, defined by:

$(\Omega \omega)(v)=\eta+\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)\left[g(s, \omega(\varsigma))+\int_0^{\varsigma} \Upsilon(\varsigma, \tau, \omega(\tau)) d \tau+\int_0^1 \Psi(\varsigma, \tau, \omega(\tau)) d \tau\right] d \varsigma$                       (44)

where, $v \in[0,1], \omega \in C^1[0,1]$.

For any $\omega, w \in C^1[0,1]$, then it has:

$\rho(\Omega \omega, \Omega \omega) \leq\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi \rho(\omega, w)$                         (45)

From $\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi<1$, then $\Omega$ is strictly contractive in $\left(C^1[0,1], \rho\right)$.

Next, suppose that $\Lambda(v) \in C^1[0,1]$ satisfies Eq. (42). By Eq. (42) and Lemma 3.1 it can get:

$\begin{gathered}\left|\Lambda(v)-\eta-\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right)\left[g(s, \Lambda(\varsigma))+\int_0^{\varsigma} \Upsilon(\varsigma, \tau, \Lambda(\tau)) d \tau+\int_0^1 \Psi(\varsigma, \tau, \Lambda(\tau)) d \tau\right] d \varsigma\right| \\ \leq \theta\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|, v \in[0,1]\end{gathered}$                 (46)

From the continuity of Mittag-Leffler function, we have $\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|$ is a continuous nonnegative function. From the Eqns. (44) and (46), then:

$|(\Omega \Lambda)(v)-\Lambda(v)| \leq \theta\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|$                     (47)

Since ζ is a continuous function, it can get:

$\rho(\Omega \Lambda, \Lambda)=\sup _{v \in[0,1]} \frac{|(\Omega \Lambda)(v)-\Lambda(v)|}{\zeta(v)} \leq \sup _{v \in[0,1]} \frac{\theta\left|\int_0^v E_{1-\alpha, 1} \,\,\,\, \left(-(v-\varsigma)^{1-\alpha} \,\,\,\right) d \varsigma\right|}{\zeta(0)}<\infty$                    (48)

Let $C^*[0,1]=\left\{y \in C^1[0,1]: \rho(\Omega \Lambda, y)<\infty\right\}$.

Applying the Banach fixed-point theorem, thus there is a solution $\Theta \in C^*[0,1]$ such that ΩΘ=Θ. That means Θ(v) is a unique solution of the system (5).

From the Banach fixed-point theorem and Eq. (48), then:

$\rho(\Lambda, \Theta) \leq \frac{1}{1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi} \rho(\Omega \Lambda, \Lambda) \leq \frac{\theta\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \zeta\right|}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)}$                       (49)

Thus, by the definition of ρ, then:

$|\Lambda(v)-\Theta(v)| \leq \frac{\theta}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)} \zeta(v)\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|$                   (50)

where, $\zeta(v)\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|$ is a continuous non-negative function. This completes the proof.

Remark 3.4 For any $v \in[0,1], \int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma$ is real number convergent series. Then, there exists N>0, such that:

$\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right|<N$                  (51)

Theorem 3.5 Assume that $\epsilon_1, \epsilon_2^k, \epsilon_2^h, \xi$ are constants for which $\epsilon_1>0, \epsilon_2^k>0, \epsilon_2^h>0,0 \leq \xi<1,\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi<1$. Assume that g, Υ, and Ψ are continuous functions, such that:

$\left\{\begin{array}{c}\left|g\left(v, h_1\right)-g\left(v, h_2\right)\right| \leq \epsilon_1\left|h_1-h_2\right|, v \in[0,1], h_1, h_2 \in \mathbb{R} \\ \left|\Upsilon\left(v, \varsigma, h_1\right)-\Upsilon\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^k\left|h_1-h_2\right|, v, \varsigma \in[0,1], h_1, h_2 \in \mathbb{R} \\ \left|\Psi\left(v, \varsigma, h_1\right)-\Psi\left(v, \varsigma, h_2\right)\right| \leq \epsilon_2^k\left|h_1-h_2\right|, v, \varsigma \in[0,1], h_1, h_2 \in \mathbb{R}\end{array}\right.$

Let $\zeta:[\mathbf{0}, \mathbf{1}] \rightarrow(\mathbf{0}, \infty)$ be a continuous non-decreasing function, and satisfies:

$\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) \zeta(\varsigma) d \varsigma \leq \xi \zeta(v)$                     (52)

If $\Lambda \in C^1[0,1]$ satisfies (4), with θ>0, then there is a solution Θ(v) of the system (5) such that:

$|\Lambda(v)-\Theta(v)| \leq \frac{N \zeta(1)}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)} \theta, v \in[0,1]$                        (53)

Proof. Since ζ is a continuous non-decreasing function,

$\zeta(v) \leq \zeta(1), v \in[0,1]$                       (54)

By theorem 3.3, Eqns. (43) and (51), then it can obtain:

$|\Lambda(v)-\Theta(v)| \leq \frac{\theta}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)} \zeta(v)\left|\int_0^v E_{1-\alpha, 1}\left(-(v-\varsigma)^{1-\alpha}\right) d \varsigma\right| \leq \frac{N \zeta(1)}{\left[1-\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi\right] \zeta(0)} \theta$                  (55)

Theorem 3.5 shows that the system (5) has the U-H stability.

3.3 Illustrative example

Example 1. Let’s assume a fractional Volterra-Fredholm system as follows

$\Theta^{\prime}(v)+{ }^c D_{0+}^{\frac{1}{2}} \Theta(v)=\frac{1}{100}[v \cos \Theta(v)+\Theta(v) \sin v]+\frac{1}{50} \int_0^v \sin \Theta(\varsigma) d \varsigma+\frac{1}{50} \int_0^1 \cos \Theta(\varsigma) d \varsigma$                   (56)

$\Theta(0)=0$                 (57)

By comparison with the system (5), it can get:

$\begin{gathered}\alpha=\frac{1}{2}, g(v, \Theta(v))=\frac{1}{100}[v \cos \Theta(v)+\Theta(v) \sin v], \Upsilon(v, \varsigma, \Theta(\varsigma))=\frac{1}{50} \sin \Theta(\varsigma) \\ \Psi(v, \varsigma, \Theta(\varsigma))=\frac{1}{50} \sin \Theta(\varsigma), \Psi(v, \varsigma, \Theta(\varsigma))=\frac{1}{50} \cos \Theta(\varsigma) .\end{gathered}$                      (58)

Then:

$\left\{\begin{array}{c}\left|g\left(v, h_1\right)-g\left(v, h_2\right)\right| \leq \frac{1}{50}\left|h_1-h_2\right|, h_1, h_2 \in \mathbb{R}, v \in[0,1] \\ \left|Y\left(v, \varsigma, h_1\right)-\Upsilon\left(v, \varsigma, h_2\right)\right| \leq \frac{1}{50}\left|h_1-h_2\right|, h_1, h_2 \in \mathbb{R}, v, \varsigma \in[0,1] \\ \left|\Psi\left(v, \varsigma, h_1\right)-\Psi\left(v, \varsigma, h_2\right)\right| \leq \frac{1}{50}\left|h_1-h_2\right|, h_1, h_2 \in \mathbb{R}, v, \varsigma \in[0,1]\end{array}\right.$                     (59)

Let $\zeta(v)=e^v$ , it can obtain:

$\int_0^v E_{\frac{1}{2}, 1}\left(-(v-\varsigma)^{\frac{1}{2}}\right) e^{\varsigma} d \varsigma<e^v-1<\frac{3}{4} e^v, v \in[0,1]$                 (60)

Here, it has $\epsilon_1=\epsilon_2^k=\epsilon_2^h=\frac{1}{50}, \xi=\frac{3}{4}$, and $\left(\epsilon_1+\epsilon_2^k+\epsilon_2^h\right) \xi=0.045<1$.

It can see that all the conditions in Theorems 3.2 and 3.5 are satisfied. Then, the system (56) is U-H stability, U-H-R stability and semi-U-H-R stability.

4. Conclusions

The objective of this study was to provide and demonstrate a novel stability theorem for the nonlinear Volterra-Fredholm integro-differential equation with Caputo fractional derivative utilising the weighted space method and fixed-point technique. The study specifically examines the H-U-R stability and semi-U-H-R stability results.

Besides, a class of nonlinear fractional Volterra-Fredholm integro-differential equations with initial conditions is discussed. By means of the Banach fixed-point techniques and weighted space, stability of the fractional nonlinear Volterra–Fredholm system has been tested. An illustrative example that demonstrates the applicability of the results has been included.

Discussing U-H-Mittag-Leffler stability [22] and finite-time stability [23] for the -Hilfer fractional Volterra-Fredholm integro-differential equations with time-varying delay terms would be a delightful extension of the current results. This will be the focus of future research.

  References

[1] Alasadi, I., Hamoud, A. (2021). Existence and stability results for fractional Volterra-Fredholm integro-differential equation with mixed conditions. Advances in Dynamical Systems and Applications, 16(1): 217-236.

[2] Bazhlekova, E. (2013). Properties of the fundamental and the impulse-response solutions of multi-term fractional differential equations. Complex Analysis and Applications, 13(31): 55-64.

[3] Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S. (2020). A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons & Fractals, 134: 109705. https://doi.org/10.1016/j.chaos.2020.109705

[4] Budak, B.M., Samarskii, A.A., Tikhonov, A.N. (2013). A collection of problems on mathematical physics. In International Series of Monographs in Pure and Applied Mathematics , 52.

[5] Chalishajar, D., Kumar, A. (2018). Existence, uniqueness and Ulam’s stability of solutions for a coupled system of fractional differential equations with integral boundary conditions. Mathematics, 6(6): 96. https://doi.org/10.3390/math6060096

[6] Jung, S.M., Popa, D., Rassias, M.T. (2014). On the stability of the linear functional equation in a single variable on complete metric groups. Journal of Global Optimization, 59(1): 165-171. https://doi.org/10.1007/s10898-013-0083-9

[7] Khan, A., Shah, K., Li, Y., Khan, T.S. (2017). Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations. Journal of Function Spaces, 2017: 3046013. https://doi.org/10.1155/2017/3046013

[8] Sousa, J.V.D.C., De Oliveira, E.C. (2018). Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Applied Mathematics Letters, 81: 50-56. https://doi.org/10.1016/j.aml.2018.01.016

[9] Dong, L.S., Hoa, N.V., Vu, H. (2020). Existence and Ulam stability for random fractional integro-differential equation. Afrika Matematika, 31(7): 1283-1294. https://doi.org/10.1007/s13370-020-00795-0

[10] Hamoud, A.A. (2021). Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations. Journal of Siberian Federal University. Mathematics & Physics, 14(3): 313-325. http://dx.doi.org/10.17516/1997-1397-2021-14-3-313-325

[11] Hamoud, A.A., Mohammed, N.M., Ghadle, K.P. (2022). Existence, uniqueness and stability results for nonlocal fractional nonlinear volterra-fredholm integro differential equations. Discontinuity, Nonlinearity, and Complexity, 11(2): 343-352.

[12] Sevgin, S., Sevli, H. (2016). Stability of a nonlinear Volterra integro-differential equation via a fixed point approach. Joournal of Nonlinear Science and Applications, 9(1): 200-207.

[13] Sousa, J.V.D.C., Rodrigues, F.G., Capelas de Oliveira, E. (2019). Stability of the fractional Volterra integro‐differential equation by means of ψ‐Hilfer operator. Mathematical Methods in the Applied Sciences, 42(9): 3033-3043. https://doi.org/10.1002/mma.5563

[14] Wang, J.R., Li, X.Z. (2016). A uniform method to Ulam–Hyers stability for some linear fractional equations. Mediterranean Journal of Mathematics, 13: 625-635. https://doi.org/10.1007/s00009-015-0523-5 

[15] Vu, H.O., Van Hoa, N. (2020). Ulam-Hyers stability for a nonlinear Volterra integro-differential equation. Hacettepe Journal of Mathematics and Statistics, 49(4): 1261-1269. https://doi.org/10.15672/hujms.483606

[16] de Oliveira, E.C., Sousa, J.V.D.C. (2018). Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results in Mathematics, 73(3).

[17] Wang, J.R., Lv, L.L., Zhou, Y. (2012). New concepts and results in stability of fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 17(6): 2530-2538. https://doi.org/10.1016/j.cnsns.2011.09.030

[18] Sousa, J.V.D.C., De Oliveira, E.C. (2018). On the ψ-Hilfer fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 60: 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005

[19] Sousa, J.V.D.C., De Oliveira, E.C. (2019). Leibniz type rule: ψ-Hilfer fractional operator. Communications in Nonlinear Science and Numerical Simulation, 77: 305-311. https://doi.org/10.1016/j.cnsns.2019.05.003

[20] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations (Vol. 204). https://doi.org/10.1016/S0304-0208(06)80001-0

[21] Mainardi, F. (2018). Fractional calculus: Theory and applications. Mathematics, 6(9): 145. https://doi.org/10.3390/math6090145

[22] Liu, K., Wang, J., O’Regan, D. (2019). Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Advances in Difference Equations, 2019(1): 1-12. https://doi.org/10.1186/s13662-019-1997-4

[23] Hei, X., Wu, R. (2016). Finite-time stability of impulsive fractional-order systems with time-delay. Applied Mathematical Modelling, 40(7-8): 4285-4290. https://doi.org/10.1016/j.apm.2015.11.012