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This study intends to provide and prove a novel stability theorem for the non-linear
Volterra-Fredholm integro-differential equation with Caputo fractional derivative using
the weighted space method and fixed-point technique. Specifically, the study
investigates the H-U-R stability and semi-U-H-R stability results. Eventually, the
investigation discusses an example of the capability of this method.

1. INTRODUCTION

As a result of their frequent appearance in a wide range of
engineering and scientific disciplines, systems of fractional
differential and integral equations are currently the focus of
active research [1]. A system of integral-differential equations
must therefore have approximate solutions. Besides, fractional
derivatives provide a powerful tool for many types of physical
modeling, such as stochastic dynamical systems,
electrodynamics of complex medium, plasma physics, signal
processing, economics, and so on researches [2, 3].

Budak et al. [4] reported that the stability issue of
differential equations solutions presented. One of the most
essential topics in differential equation theory is Ulam-Hyers
stability. Because of the broad scope of fractional calculus,
many authors focused on the study of stability for fractional
differential equations [5-8]. In the same regard, fractional
integro-differential equations also drew the attention of several
authors [9-16].

Chalishajar and Kumar [5] enhanced a new direction of
research via studied the existence and uniqueness of the
solutions as well as discussed two types of stability. In same
regard, Khan et al. [7] used Perov's fixed point theorem and
generalized metric space to derive some relaxed requirements
for the uniqueness of positive solutions to the aforementioned
problem. Dong et al. [9] investigated the Ulam-Hyers stability
and Ulam-Hyers-Rassias stability of the random fractional
integro-differential equation using the fixed point theorem.

The stability theory of fractional integro-differential
equations is a significant branch of fractional calculus. The
Ulam-type stability of an integro-differential equation implies
that we can find the exact solution to the problem near an
approximate solution. Several varieties of Ulam-type stability
for nonlinear fractional integro-differential equations have
been studied in recent decades [5, 7, 15-17].

Recently, Sevgin and Sevli [12] examined the U-H stability
and the U-H-R stability in formulations of fixed-point
techniques for the nonlinear Volterra equation:
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N@) = A@,AW) + [y @ (v,6,A(5) )ds (1)

Vu and Van Hoa [15] addressed the nonlinear IVP of the
Volterra equations, and they wused the successive
approximation approach to explain the U-H and U-H-R
stability of the following equations.

AN@) = Alv,A()) + f(:cb (v,6,A(¢))dg, v €
(2)
[a, b]

A(a) = 4 3)

Sousa and De Oliveira [18, 19] introduced U-H stability for
the Volterra -Hilfer fractional problem using the Banach fixed-
point approach.

1Dy F Y A@) = A(w, A@)) + [T @ (v,6,A()) ds (4

where, Dy f ¥ is the y-Hilfer fractional derivative.

Herein, the current study is interested in the following

Caputo fractional nonlinear Volterra-Fredholm integro-
differential problem:
0’ (v)+°D§,0(v) = g(v,0(v)) + )

JX (v,6,0(9)ds + [ W (v,5,0())ds, v € [0,1]

0(0) =7 (6)
where, © € C1[0,1],0 <a < 1,Y,¥:[0,1] X [0,1] x R > R
and g: [0,1] X R - R are continuous functions.

Motivated by the above studies, the current study will
investigate another problem of stability theorem for the non-
linear Volterra-Fredholm integro-differential equation with
Caputo fractional derivative using the weighted space method
and fixed-point technique.

Therefore, the aim of this work is to investigate the H-U, H-
U-R, and semi-U-H-R stability for the system (5) under some
new standards.
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2. PRELIMINARIES

In this segment, the study introduces some useful
preliminaries for fractional derivatives [20, 21]. Moreover, we
recall concepts of stability for Eq. (5).

Let:

[oW)-w®)|

1
o € C'[0,1]

p(B,w) = sup ,0,w

velo,1]

(7

The weighted metric, where function § is a continuous non-
decreasing defined as : [0, 1] = (0, +o0) then there is § €
[0, 1), satisfies:

Jy Er—ar (0 = 9 9)e(o)ds < & (v) (8)

Obviously, (C'[0,1], p) is a complete metric space.

Definition 2.1 [20, 21] Let f: (0, +0) — R be integrable
function, the R-L fractional integral is given by:

f (A=)t f(v)dv,A > 0,0 <

a<l.

I8 M) = -

)

Definition 2.2 [20, 21] The left Caputo fractional derivative
of differentiable function f(v) is given by:

-

DESW) = 17 () = 15

(10)
) *f'(v)dv,0 < a < 1.

Definition 2.3 [20, 21] The function of Mittag-Leffler is
given by:

Eqp(2) = Xi- 0F(ka+ﬁ) B,z € C,Re(B) >

0,Re(a) >0

(11

The Laplace transform of the Mittag-Leffler and Caputo
derivative given by:

a-p
L{Vﬁ_lEa,ﬁ(iava)}(C) = (Z“—ia)’Re(C) >

(12)
1
lale,Re(B) > 0,Re(a) > 0,8, € C
ak+B-1r k) a —
rfvak+p-1E ﬁﬂvﬁ@) e Re(©) > 03
MimBEQ
where:
(k) _ w (i _
Eq (y) dy k Eep() = Zj:oj![‘(aj+ak+,8)'k - (14)
0,12, ..,

and

LDG I = ¢*f(6) —¢* ' f(0),0<a<1, (I5)

respectively [20, 21].

Definition 2.4 [20, 21] If A(v) is a given differential
function, satisfying:
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X @) +DgA®) = g (v, AW)) —

fon (v,6,A(¢))dg — fol ¥(v, (;,A((;))dc| <0,ve
[0,1],6 > 0,

(16)

There is C>0 and ®(v) is a solution of the system in Eq. (5),
where:

IA(w) — O()| < €6,v € [0,1] (17)

Then, the system in Eq. (5) has the U-H stability.
If A(v) satisfies (16) there is a solution ®(v) of the system
(5) and C>0, such that:

[A(v) —0(W)| < Cop(v),v € [0,1] (18)

where, the function ¢ is continuous nonnegative defined as
#:[0,1]—(0,+°), then the system (1) has the semi-U-H-R
stability.

If ¢:[0,1]—(0,+=°) is a continuous and A(v) satisfying:

X @) +D§A®) - g (v, AW)) —

v N (19)

[ (w6, A))ds = fy W(v,6,A)| < o @)
There is C>0 and ©(v) is a solution of the system (5), where:
[A(w) —0W)| < —Co(v),v € [0,1] (20

Then, the system in Eq. (1) has the U-H-R stability.

3. STABILITY RESULTS

The study will investigate in this segment the stabilities of
U-H-R, semi-U-H-R and U-H for the system (1) in C*[0,1].

3.1 U-H-R stability for the system in Eq. (5)

Here, the study will investigate the equivalent integral
equation of the system (5) and study the U-H-R stability for
the system (5) in (C'[0,1], p).

Lemma 3.1 Assume that f:[0,1] » R is a continuous
function, and 0 < a < 1,0(v) € C[0,1], the unique solution
of the following equation.

0'(W)+D5:0(v) = f(v),0(0) =7 21
is given by:
OW) =1+ [y E1oes (= )"f(Qds. (22

Proof: The Laplace transforms of both ©’(v) and °D§, ©(v)
exist for ©(v) € €[0,1], applying the Laplace transform on
two sides of Eq. (22). Then,

s0(¢) —n +¢*0(s) —¢*710(0) = f(¢) (23)

0(s) ==

IHO) (24)

c“+c

It can take the inverse Laplace transform on the both sides
of Eq. (23), then get:



o(v) =1 + f Eiar (=" Of(ds (25

0

Then, O(v) satisfies Eq. (21)& 0(v) satisfies Eq. (23). As
aresult, Eq. (23) is the equivalent integral equation of Eq. (21).

Theorem 3.2 Assume that a function { is continuous non-
decreasing defined as {: [0,1] — (0,00), and there exists & € [0,
1), satisfying:

f Eyan (@ — 79 (0)dg < £ (v) (26)

The following hypotheses are introduced:
[Di] Assume that a continuous function g defined as
g:[0,1] X R - R, such that:

lg(v, hy) — g(v, ho)| < €11hy — hyl, v 27)
€ [0,1],hy, h, ER
with €,>0.

[D2] Suppose that the kernels Y, W:[0,1] X [0,1] X R » R
are continuous functions satisfying:

|Y(U, S hl) - Y(U, ¢ hZ)l < eé{lhl - h2|:U;C

€[0,1],h, h, ER (28)
W, 6, h1) =P (W, ho)| < €F|hy — hy (29)

with €¥, el > 0. If A € C*[0,1] satisfies:
N @)+DEAW) — g(v, AW)) — (30)

f:Y(v, ¢, A(¢))ds — fol ¥(v,6,A()) dC| <
{(v),v € [0,1],

and if:

(e, +tef+eME<1 (31)

Then we have O(v) is a solution of the system (5) satisfies:

1-(eg+ek+el)

A(W) =) < (32)

Proof: Applying Lemma 3.1, the equivalent equation of Eq.
(5) is given by:

OW) =1+ [} Er_an (- — "9 [g(5,0(5)) +

33
foc Y(¢,t,0(1))dt + fol ¥(,1,0(1)) dr] dg 33)
Define the operator Q: C1[0,1] - C*[0, 1] by:
Q)W) =0+ f) E1_gn (—(v =
' g(s w(6))ds
+ o J Erman (0 = 97 Y(o T w(D)dtds  (34)

+ fov fol El—oz,l (—(1] -
O ¥(¢, 1, w(t))drds, v € [0,1], w € C*[0,1]

From the hypotheses [D1] and [D2], so € is continuous.

Now, we will show that Q is strictly contractive in (C'[0,1],
p). By weighted metric p definition and Eqns. (26)-(28), for
any w,w € C'[0, 1], it can obtain:

1) Ercan (=@ = )7 9)[g(s, w(e)) — g(s,w(s))]dg]|

p(Qw, Qw) < sup

vel0,1] ()
v —
Uo foc Ei o1 (=)' 9)[Y(st 0(®) - Y(5, T, w(t))]drdg|
+ sup
ve[o,1] ¢(v)
B Jy Ermaa (-0 = 7 O[¥(5, 1 0(0) — ¥(5, T, w(D))|drdg]
+ sup
vel0,1] ¢(v)
v —
|fy Er-a1(=(v = )" (s) — w(s)ldg]| (35)
<€ sup
ve[0,1] c(v)
v —
e My Brean (= = ') [l (t) — w(D)|dtdg]|
+ €; sup
vef0,1] s()
| Ereaa @ = 977 [l - w)ldrds|
+ €, sup
velo,1] s(v)
< ciép(w,w) + c5ép(w,w) + cjé(w,w) = (&, + €5 + €1)ép(w,w)
From the hypothesis (¢; + €5 + €,)& < 1, so Q is strictly conclude:
contractive.
Here, it can assume that A(v) € C1[0, 1] satisfies Eq (30). |(QA)(v) — A(v)| < &E7(v) (37)
By Eqns. (30), (26) and Lemma 3.1, then:
Then, by p definition, it get:
AW) =1 —[E_,(—(v — )t @ s, A +
IA@) =1 = [} Er-aa (—(0 = )19 [g(s,A()) AR < <1< a5)

[¥(etA@)dr + [ W(s 1, A@)dT|dg < (36)

|f) Ercan (- = )19 ds| < € (),

The procedures for proving Eq (36) are the same as for
proving Lemma 3.1. From Q definition and Eq. (36), it can
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Let C*[0,1] = {y € C'[0,1]: p(QA,y) < }. By Banach
fixed-point theorem, there is a unique solution ©® € C*[0, 1]
such that Q®=0, that means O is a solution of the system (33).
Therefore, © is the solution of the system (1). Then:



¢

1-(e;+ek+el)e

p(A,0) < Q)sp(QA’ A) <

1
1-(e;+ek+e

(39)

From p definition, the Eq. (33) holds. This completes the
proof.

3.2 Semi-U-H-R and U-H stabilities for the system (5)

The study will investigate in this segment the stabilities of
U-H and semi-U-H-R in C'[0,1] for the system in Eq. (5).

Theorem 3.3 Assume that a function { is continuous non-
decreasing defined as C: [0, 1] — (0, «) and there is € [0, 1)
satisfying:

IS By (~(0 = 91 9(¢)dg < & (v) (40)
Let €;,€5,€} > 0 for (61 + ek + e*zl)E < 1. Assume that

h:[0,1]xR—> R and Y,¥:[0,1] X[0,1] xR >R are
continuous functions satisfying:

|Y('U, S hl) - Y(V' S hz)l < eéclhl - h'Z |l v,¢ € [Orl]r hl' hZ ER
(v, h) =¥, ho)| < €}lhy — hy|,v,6 €[0,1], by, h; ER

|g(17' hy) = 9(17, h)| < €1lhy — hyl,v € [0,1], hy, hy €R
(41)

If A € C'[0,1] satisfies:

N W) +°DgAW) = g(v,A(W)) —

f:Y(v, ¢, A(¢))dg — fol ¥(v, g,A(g))dc| <6,ve
[0,1]

(42)

with 6>0, thus there is ®(v) solution of the system (5) satisfies:

A(v) —O()| <
|f) Ergn (v — )" Ndg|,v €
[0,1]

0¢(v)
[1-(e1+ek+el)E]¢(0)

(43)

This means that under above conditions, the system (5) has
the semi-U-H-R stability.

Proof. Consider Q: C1[0, 1] - C[0, 1], defined by:

Q)®) =+ [} E1—gq (—(v -

O [g(s.w(c)) + [ Y(s. T, 0(0))dr + (44)
fol ¥(s,1, w(r))dr] dg
where, v € [0,1],w € C'[0,1].
For any w,w € C'[0, 1],then it has:
p(Qw, Qw) < (€1 + €5 + €3)ép(w,w) (45)

From (e; + € + e?) & < 1, then Q is strictly contractive
in (C1[0,1], p).

Next, suppose that A(v) € C1[0,1] satisfies Eq. (42). By Eq.

(42) and Lemma 3.1 it can get:

|A@) =0 = [} By (0 = )19 [g (s, A9)) +
fog Y(s,7,A(x))dT + fol (s, ‘[,A(‘[))d‘[] d§| <
0|, Er-gr (- — ©)1™dgl, v € [0,1]

(46)
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From the continuity of Mittag-Leffler function, we have
|f:E1_a‘1(—(v—g)1‘“)dg| is a continuous nonnegative
function. From the Eqns. (44) and (46), then:

Q) () = AW)| < 8|[) Er—qr (—(w — )1 "%)dg|  (47)

Since {'is a continuous function, it can get:

[(QA) (W) -AW)|
QA,A) = sup 2P0
p( ) ve[ol?l] )

0 |f(;7 E1—a,1(—(U—C)1_a)dC|
¢(0)

(43)

sup
vel0,1]

Let C*[0,1] = {y € C[0,1]: p(QA,y) < o0}.

Applying the Banach fixed-point theorem, thus there is a
solution @ € €*[0,1] such that Q®=0. That means O(v) is a
unique solution of the system (5).

From the Banach fixed-point theorem and Eq. (48), then:

1

p(A, @) < m[)(ﬂ/\,/\) <
6|17 Bt (~(v-9) )| (49)
[1-(e;+eX+eM)E]C(0)
Thus, by the definition of p, then:
A(w) —0W)| <
6 (50)

v (1 — \1-a
[1—(61+6§+63)5]{(0) ((U) |f0 El—a,l( (U C) )dd
where, {(v) |f0v Ei_g1(—(v—9¢)'9%) dg‘| is a continuous non-
negative function. This completes the proof.

Remark 3.4 For any v € [0,1], fov Ey_a1(—(v — )1 %)d¢
is real number convergent series. Then, there exists N > 0,
such that:

|y Er-ar(=(v = )" ) dg| <N (51)

Theorem 3.5 Assume that €, €X, e, & are constants for
whiche; > 0,e¥ > 0,e >0,0<&<1,(g, + b+ D)<
1. Assume that g, Y, and ¥ are continuous functions, such that:

|Y(U, (¥} hl) - Y(U! ¢ h2)| < Eé‘lhl - h‘le v¢ € [Oll]lhllhz ER

{ lg(, hi) — g, hy)| < €lhy — hyl,v € [0,1], hy, h; € R
Iqj(v' S hl) - lp(v' S hZ)I < E%lhl - h2|: v,¢ € [Oll]lhllhz ER

Let {:[0,1] — (0,00) be a continuous non-decreasing
function, and satisfies:

Iy Erear (= = )79 (9)ds < 0(v) (52)

If A € C'[0,1] satisfies (4), with 6>0, then there is a
solution @(v) of the system (5) such that:

NS(1)
(e1+ek+el)¢]C(0)

A(w) — ()| < = 0,v e [0,1] (53)

Proof. Since {'is a continuous non-decreasing function,
{(w) =¢(1),ve[0,1] (54)

By theorem 3.3, Eqns. (43) and (51), then it can obtain:



A(v) —0(W)| <
((@UOV E1—a,1(—(17 -

N{(1)
(61+e§+e§)€]§(0)

7]
[1-(e1+ek+el)E]¢(0)

61" d| <

(35)
0

Theorem 3.5 shows that the system (5) has the U-H stability.
3.3 Illustrative example

Example 1. Let’s assume a fractional Volterra-Fredholm
system as follows

1
0'(w)+°D;,0(v) = ﬁ [vcosO (v) +

(56)
. 1 cv . 1 1
0(v) sinv] + Efo sin O(¢)dg + Efo cos 0(¢)dg,
0(0) =0 (57)
By comparison with the system (5), it can get:
1 1
a= E.g(v,G)(v)) = E[v cosO(v) +
() sinv], Y(v,¢,0(¢)) = (58)
1 .
—5sin0(0), ¥(v,6,0(9) =
1 . 1
Lsin6(c), (v,5,0()) = =cos 6 ().
Then:
1
I( |9, k) = g, k)| < 55 |hy = ol hy by € Rov € [0,1]
[Y(,¢,hy) = Y(v,¢,hy)| < % |hy — hy), by, hy € R, 0,6 € [0,1] (59)
900,65, 1) = ¥, k)| < o5y = Rl by € Rv, € 01]
Let {(v) = e", it can obtain:
v 1 3
— — ¢ v _ 2,V
Js E%,l( (v g)Z)e dg<e’—1<ie’,vE (60)

[0,1]
Here, it has €, = €k = el ==

50
eMNEé = 0.045 < 1.
It can see that all the conditions in Theorems 3.2 and 3.5 are
satisfied. Then, the system (56) is U-H stability, U-H-R
stability and semi-U-H-R stability.

%, and (e; + €k +

4. CONCLUSIONS

The objective of this study was to provide and demonstrate
a novel stability theorem for the nonlinear Volterra-Fredholm
integro-differential equation with Caputo fractional derivative
utilising the weighted space method and fixed-point technique.
The study specifically examines the H-U-R stability and semi-
U-H-R stability results.

Besides, a class of nonlinear fractional Volterra-Fredholm
integro-differential equations with initial conditions is
discussed. By means of the Banach fixed-point techniques and
weighted space, stability of the fractional nonlinear Volterra—
Fredholm system has been tested. An illustrative example that
demonstrates the applicability of the results has been included.

Discussing U-H-Mittag-Leffler stability [22] and finite-
time stability [23] for the -Hilfer fractional Volterra-Fredholm
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integro-differential equations with time-varying delay terms
would be a delightful extension of the current results. This will
be the focus of future research.
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