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This study intends to provide and prove a novel stability theorem for the non-linear 

Volterra-Fredholm integro-differential equation with Caputo fractional derivative using 

the weighted space method and fixed-point technique. Specifically, the study 

investigates the H-U-R stability and semi-U-H-R stability results. Eventually, the 

investigation discusses an example of the capability of this method. 
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1. INTRODUCTION

As a result of their frequent appearance in a wide range of 

engineering and scientific disciplines, systems of fractional 

differential and integral equations are currently the focus of 

active research [1]. A system of integral-differential equations 

must therefore have approximate solutions. Besides, fractional 

derivatives provide a powerful tool for many types of physical 

modeling, such as stochastic dynamical systems, 

electrodynamics of complex medium, plasma physics, signal 

processing, economics, and so on researches [2, 3]. 

Budak et al. [4] reported that the stability issue of 

differential equations solutions presented. One of the most 

essential topics in differential equation theory is Ulam-Hyers 

stability. Because of the broad scope of fractional calculus, 

many authors focused on the study of stability for fractional 

differential equations [5-8]. In the same regard, fractional 

integro-differential equations also drew the attention of several 

authors [9-16]. 

Chalishajar and Kumar [5] enhanced a new direction of 

research via studied the existence and uniqueness of the 

solutions as well as discussed two types of stability. In same 

regard, Khan et al. [7] used Perov's fixed point theorem and 

generalized metric space to derive some relaxed requirements 

for the uniqueness of positive solutions to the aforementioned 

problem. Dong et al. [9] investigated the Ulam-Hyers stability 

and Ulam-Hyers-Rassias stability of the random fractional 

integro-differential equation using the fixed point theorem. 

The stability theory of fractional integro-differential 

equations is a significant branch of fractional calculus. The 

Ulam-type stability of an integro-differential equation implies 

that we can find the exact solution to the problem near an 

approximate solution. Several varieties of Ulam-type stability 

for nonlinear fractional integro-differential equations have 

been studied in recent decades [5, 7, 15-17]. 

Recently, Sevgin and Sevli [12] examined the U-H stability 

and the U-H-R stability in formulations of fixed-point 

techniques for the nonlinear Volterra equation: 

∆′(𝜐)  =  𝐴(𝜐, ∆(𝜐))  + ∫ Φ (𝑣, 𝜍, ∆(𝜍) )𝑑𝜍
𝑣

0
 (1) 

Vu and Van Hoa [15] addressed the nonlinear IVP of the 

Volterra equations, and they used the successive 

approximation approach to explain the U-H and U-H-R 

stability of the following equations. 

∆′(𝜐) =  𝐴(𝜐, ∆(𝜐)) + ∫ Φ (𝑣, 𝜍, ∆(𝜍))𝑑𝜍,
𝑣

𝑎
 𝑣 ∈

[𝑎, 𝑏] 
(2) 

∆(𝑎) = ∆0 (3) 

Sousa and De Oliveira [18, 19] introduced U-H stability for 

the Volterra -Hilfer fractional problem using the Banach fixed-

point approach.  

H𝐷0+
𝛼,𝛽; 𝜓𝜓 

∆(𝑣) = 𝐴(𝑣, ∆(𝑣)) + ∫ Φ (𝑣, 𝜍, ∆(𝜍))
𝑣

0
𝑑𝜍 (4) 

where, H𝐷0+
𝛼,𝛽;𝜓

 is the ψ-Hilfer fractional derivative. 

Herein, the current study is interested in the following 

Caputo fractional nonlinear Volterra-Fredholm integro-

differential problem: 

Θ′(𝑣)+𝑐𝐷0+
𝛼 Θ(𝑣) = 𝑔(𝑣, Θ(𝑣)) +

∫ Υ
𝑣

0
(𝑣, 𝜍, Θ(𝜍))𝑑𝜍 + ∫ Ψ

1

0
(𝑣, 𝜍, Θ(𝜍))𝑑𝜍, 𝑣 ∈ [0,1] 

(5) 

Θ(0) = 𝜂 (6) 

where, Θ ∈ C1[0,1], 0 < 𝛼 < 1, Υ,Ψ: [0,1] × [0,1] × ℝ → ℝ
and 𝑔: [0, 1] × ℝ → ℝ are continuous functions. 

Motivated by the above studies, the current study will 

investigate another problem of stability theorem for the non-

linear Volterra-Fredholm integro-differential equation with 

Caputo fractional derivative using the weighted space method 

and fixed-point technique. 

Therefore, the aim of this work is to investigate the H-U, H-

U-R, and semi-U-H-R stability for the system (5) under some 

new standards. 
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2. PRELIMINARIES 

 

In this segment, the study introduces some useful 

preliminaries for fractional derivatives [20, 21]. Moreover, we 

recall concepts of stability for Eq. (5). 

Let: 

 

𝜌(Θ, 𝜔) = sup
𝑣∈[0,1]

|Θ(𝑣)−𝜔(𝑣)|

𝜉(𝑣)
, Θ, 𝜔 ∈ 𝐶1[0,1]  (7) 

 

The weighted metric, where function ξ is a continuous non-

decreasing defined as ζ: [0, 1] → (0, +∞) then there is ξ ∈
[0, 1), satisfies: 

 

∫ 𝐸1−𝛼,1 (−(𝑣 − 𝜍)
1−𝛼)𝜍(𝜍)𝑑𝜍

𝑣

0
≤  𝜉𝜁(𝑣)  (8) 

 

Obviously, (C1[0,1], ρ) is a complete metric space. 

 

Definition 2.1 [20, 21] Let 𝑓: (0, +∞) → ℝ be integrable 

function, the R-L fractional integral is given by: 

 

𝐼0+
𝛼 𝑓(Λ) =

1

Γ(𝛼)
∫ (Λ − 𝑣)𝛼−1
Λ

0
𝑓(𝑣)𝑑𝑣, Λ > 0, 0 <

𝛼 < 1.  
(9) 

 

Definition 2.2 [20, 21] The left Caputo fractional derivative 

of differentiable function f(υ) is given by: 

 
c𝐷0+

𝛼 𝑓(Λ) = 𝐼0+
1−𝛼𝑓′(Λ) =

1

Γ(1−𝛼)
∫ (Λ −
Λ

0

𝑣)−𝛼 𝑓′(𝑣)𝑑𝑣, 0 < 𝛼 < 1. 
(10) 

 

Definition 2.3 [20, 21] The function of Mittag-Leffler is 

given by: 

 

𝐸𝛼,𝛽(𝓏) = ∑
𝓏𝑘

Γ(𝑘𝛼+𝛽)
∞
𝑘=0 , 𝛽, 𝛼, 𝓏 ∈ ℂ, 𝑅𝑒(𝛽) >

0, 𝑅𝑒(𝛼) > 0  
(11) 

 

The Laplace transform of the Mittag-Leffler and Caputo 

derivative given by: 

 

ℒ{𝑣𝛽−1𝐸𝛼,𝛽(±𝑎𝑣
𝛼)}(𝜍) =

𝜍𝛼−𝛽

(𝜍𝛼∓𝑎)
, 𝑅𝑒(𝜍) >

|𝑎|
1

𝛼, 𝑅𝑒(𝛽) > 0, 𝑅𝑒(𝛼) > 0, 𝛽, 𝛼 ∈ ℂ  

(12) 

 

ℒ{𝑣𝛼𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝑎𝑣𝛼)}(𝜍) =

𝑘!𝜍𝛼−𝛽

(𝜍𝛼∓𝑎)𝑘+1
, 𝑅𝑒(𝜍) >

|𝑎|
1

𝛼, 𝛼, 𝛽 ∈ ℂ,  

(13) 

 

where: 

 

𝐸𝛼,𝛽
(𝑘)(𝑦) =

𝑑𝑘

𝑑𝑦𝑘
 𝐸𝛼,𝛽(𝑦) = ∑

(𝑗+𝑘)!𝑦𝑗

𝑗!Γ(𝛼𝑗+𝛼𝑘+𝛽)
∞
𝑗=0 , 𝑘 =

0,1,2, …,  
(14) 

 

and  

 

ℒ𝑐𝐷0+
𝛼 𝑓(𝑣)}(𝜍) = 𝜍𝛼𝑓(𝜍) − 𝜍𝛼−1𝑓(0), 0 < 𝛼 < 1, (15) 

 

respectively [20, 21]. 

 

Definition 2.4 [20, 21] If Λ(v) is a given differential 

function, satisfying: 

 

|Λ′(𝑣)+𝑐𝐷0+
𝛼 Λ(𝑣) − 𝑔(𝑣, Λ(𝑣)) −

∫ Υ
𝑣

0
(𝑣, 𝜍, Λ(𝜍))𝑑𝜍 − ∫ Ψ(𝑣, 𝜍, Λ(𝜍))𝑑𝜍

1

0
| ≤ 𝜃, 𝑣 ∈

[0,1], 𝜃 > 0,  

(16) 

 

There is C>0 and Θ(v) is a solution of the system in Eq. (5), 

where: 

 
|Λ(𝑣) − Θ(𝑣)| ≤ 𝐶𝜃, 𝑣 ∈ [0,1] (17) 

 

Then, the system in Eq. (5) has the U-H stability. 

If Λ(v) satisfies (16) there is a solution Θ(v) of the system 

(5) and C>0, such that: 

 
|Λ(𝑣) − Θ(𝑣)| ≤ 𝐶𝜙(𝑣), 𝑣 ∈ [0,1] (18) 

 

where, the function φ is continuous nonnegative defined as 

ϕ:[0,1]→(0,+∞), then the system (1) has the semi-U-H-R 

stability. 

If ϕ:[0,1]→(0,+∞) is a continuous and Λ(v) satisfying: 

 

|Λ′(𝑣)+𝑐𝐷0+
𝛼 Λ(𝑣) − 𝑔(𝑣, Λ(𝑣)) −

∫ Υ(𝑣, 𝜍, Λ(𝜍))𝑑𝜍
𝑣

0
− ∫ Ψ(𝑣, 𝜍, Λ(𝜍))

1

0
| ≤ 𝜑(𝑣)  

(19) 

 

There is C>0 and Θ(𝑣) is a solution of the system (5), where: 

 
|Λ(𝑣) − Θ(𝑣)| < −𝐶𝜑(𝑣), 𝑣 ∈ [0,1] (20) 

 

Then, the system in Eq. (1) has the U-H-R stability. 

 

 

3. STABILITY RESULTS 

 

The study will investigate in this segment the stabilities of 

U-H-R, semi-U-H-R and U-H for the system (1) in C1[0,1]. 

 

3.1 U-H-R stability for the system in Eq. (5) 

 

Here, the study will investigate the equivalent integral 

equation of the system (5) and study the U-H-R stability for 

the system (5) in (C1[0,1], ρ). 

 

Lemma 3.1 Assume that 𝑓: [0,1] → ℝ  is a continuous 

function, and 0 < 𝛼 < 1, Θ(𝑣) ∈ 𝐶1[0,1], the unique solution 

of the following equation. 

 

Θ′(𝑣)+𝑐𝐷0+
𝛼 Θ(𝑣) = 𝑓(𝑣), Θ(0) = 𝜂 (21) 

 

is given by: 

 

Θ(𝑣) = 𝜂 + ∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝑓(𝜍)𝑑𝜍.  (22) 

 

Proof: The Laplace transforms of both Θ′(𝜐) and c𝐷0+
𝛼 Θ(𝑣) 

exist for Θ(𝑣) ∈ 𝐶1[0,1], applying the Laplace transform on 

two sides of Eq. (22). Then, 

 

𝑠Θ̃(𝜍) − 𝜂 + 𝜍𝛼Θ̃(𝜍) − 𝜍𝛼−1Θ(0) = 𝑓(𝜍) (23) 

 

Θ̃(𝜍) =
1

𝜍
𝜂 +

1

𝜍𝛼+𝜍
𝑓(𝜍)  (24) 

 

It can take the inverse Laplace transform on the both sides 

of Eq. (23), then get: 
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Θ(𝑣) = 𝜂 + ∫ 𝐸1−𝛼,1

𝑣

0

(−(𝑣 − 𝜍)1−𝛼)𝑓(𝜍)𝑑𝜍 (25) 

 

Then, Θ(v) satisfies Eq. (21)⇔ Θ(𝑣) satisfies Eq. (23). As 

a result, Eq. (23) is the equivalent integral equation of Eq. (21). 

 

Theorem 3.2 Assume that a function ζ is continuous non-

decreasing defined as ζ: [0,1] → (0,∞), and there exists ξ ∈ [0, 

1), satisfying: 

 

∫ 𝐸1−𝛼,1

𝑣

0

(−(𝑣 − 𝜍)1−𝛼)𝜁(𝜍)𝑑𝜍 ≤ 𝜉𝜁(𝑣) (26) 

 

The following hypotheses are introduced: 

[D1] Assume that a continuous function g defined as 

g: [0, 1] × ℝ → ℝ, such that: 

 
|𝑔(𝑣, ℎ1) − 𝑔(𝑣, ℎ2)| ≤ 𝜖1|ℎ1 − ℎ2|, 𝑣

∈ [0,1], ℎ1, ℎ2 ∈ ℝ 
(27) 

 

with є1>0. 

[D2] Suppose that the kernels Υ,Ψ: [0,1] × [0,1] × ℝ → ℝ 

are continuous functions satisfying: 

 

|Υ(𝑣, 𝜍, ℎ1) − Υ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
𝑘|ℎ1 − ℎ2|, 𝑣, 𝜍

∈ [0,1], ℎ1, ℎ2 ∈ ℝ 
(28) 

 

|Ψ(𝑣, 𝜍, ℎ1) − Ψ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
ℎ|ℎ1 − ℎ2| (29) 

 

with 𝜖2
𝑘, 𝜖2

ℎ > 0. If Λ ∈ 𝐶1[0,1] satisfies: 

 

|Λ′(𝑣)+𝑐𝐷0+
𝛼 Λ(𝑣) − 𝑔(𝑣, Λ(𝑣)) − (30) 

∫ Υ(𝑣, 𝜍, Λ(𝜍))𝑑𝜍
𝑣

0
− ∫ Ψ(𝑣, 𝜍, Λ(𝜍))

1

0
𝑑𝜍| ≤

𝜁(𝑣), 𝑣 ∈ [0,1],  
 

and if: 

 

(𝜖1 + 𝜖2
𝑘 + 𝜖2

ℎ)ξ < 1 (31) 

 

Then we have Θ(v) is a solution of the system (5) satisfies: 

 

|Λ(𝑣) − Θ(𝑣)| ≤
𝜉𝜁(𝑣)

1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉
, 𝑣 ∈ [0,1]  (32) 

 

Proof: Applying Lemma 3.1, the equivalent equation of Eq. 

(5) is given by: 

 

Θ(𝑣) = 𝜂 + ∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼) [𝑔(𝜍, Θ(𝜍)) +

∫ Υ(𝜍, τ, Θ(τ))𝑑τ +
𝜍

0
∫ Ψ(𝜍, τ, Θ(τ))
1

0
𝑑τ] 𝑑𝜍  

(33) 

 

Define the operator Ω: 𝐶1[0, 1] → 𝐶1[0, 1] by: 

 

(Ω𝜔)(𝑣) = 𝜂 + ∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 −

𝜍)1−𝛼)𝑔(𝜍, 𝜔(𝜍))𝑑𝜍  

+∫ ∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)

𝜍

0
Υ(𝜍, τ, ω(τ))𝑑τdς

𝑣

0
  

+∫ ∫ 𝐸1−𝛼,1
1

0
(−(𝑣 −

𝑣

0

𝜍)1−𝛼)Ψ(𝜍, τ, ω(τ))𝑑τdς, 𝑣 ∈ [0,1], 𝜔 ∈ 𝐶1[0,1]  

(34) 

 

From the hypotheses [D1] and [D2], so Ω is continuous. 

Now, we will show that Ω is strictly contractive in (C1[0,1], 

ρ). By weighted metric ρ definition and Eqns. (26)-(28), for 

any 𝜔,𝑤 ∈ 𝐶1[0, 1], it can obtain: 

 

𝜌(Ω𝜔, Ω𝑤) ≤ sup
𝑣∈[0,1]

|∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)[𝑔(𝜍, 𝑤(𝜍)) − 𝑔(𝑠, 𝑤(𝜍))]𝑑𝜍|

𝜁(𝑣)

+ sup
𝑣∈[0,1]

|∫ ∫ 𝐸1−𝛼,1
𝜍

0
(−(𝑣 − 𝜍)1−𝛼)[Υ(𝜍, τ, 𝜔(τ)) − Υ(𝜍, τ, 𝑤(τ))]𝑑τdς

𝑣

0
|

𝜍(𝑣)

+ sup
𝑣∈[0,1]

|∫ ∫ 𝐸1−𝛼,1
1

0
(−(𝑣 − 𝜍)1−𝛼)[Ψ(𝜍, τ, 𝜔(τ)) − Ψ(𝜍, τ, 𝑤(τ))]𝑑τdς

𝑣

0
|

𝜍(𝑣)

≤ 𝜖1 sup
𝑣∈[0,1]

|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)|𝜔(𝜍) − 𝑤(𝜍)|𝑑𝜍

𝑣

0
|

𝜍(𝑣)

+ 𝜖2
𝑘 sup
𝑣∈[0,1]

|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼) ∫ |𝜔(τ) − 𝑤(τ)|𝑑τ𝑑𝜍

𝜍

0

𝑣

0
|

𝜍(𝑣)

+ 𝜖2
ℎ sup
𝑣∈[0,1]

|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼) ∫ |𝜔(τ) − 𝑤(τ)|𝑑τ𝑑𝜍

1

0

𝑣

0
|

𝜍(𝑣)

≤ 𝑐1𝜉𝜌(𝜔,𝑤) + 𝑐2
𝑘𝜉𝜌(𝜔,𝑤) + 𝑐2

ℎ𝜉(𝜔,𝑤) = (𝜖1 + 𝜖2
𝑘 + 𝜖2

ℎ)𝜉𝜌(𝜔,𝑤) 

(35) 

 

From the hypothesis (є1 + є2
𝑘 + єℎ)𝜉 <  1, so Ω is strictly 

contractive. 

Here, it can assume that Λ(𝜐) ∈ 𝐶1[0, 1] satisfies Eq (30). 

By Eqns. (30), (26) and Lemma 3.1, then: 

 

|Λ(𝑣) − 𝜂 − ∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)

𝑣

0
[𝑔(𝑠, Λ(𝜍)) +

∫ Υ(𝜍, 𝜏, Λ(𝜏))𝑑𝜏 + ∫ Ψ(𝜍, 𝜏, Λ(𝜏))𝑑𝜏
1

0

𝜍

0
] 𝑑𝜍 ≤

|∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝜁(𝜍)𝑑𝜍| ≤ 𝜉𝜁(𝑣),  

(36) 

 

The procedures for proving Eq (36) are the same as for 

proving  Lemma 3.1. From Ω definition and Eq. (36), it can 

conclude: 

 

|(ΩΛ)(𝑣) − Λ(𝑣)| ≤ 𝜉𝜁(𝑣) (37) 

 

Then, by 𝜌 definition, it get: 

 

𝜌(ΩΛ, Λ) ≤ 𝜉 < 1 < ∞ (38) 

 

Let 𝐶∗[0, 1] = {𝑦 ∈ 𝐶1[0,1]: 𝜌(ΩΛ, 𝑦) < ∞} . By Banach 

fixed-point theorem, there is a unique solution Θ ∈ 𝐶∗[0, 1] 
such that ΩΘ=Θ, that means Θ is a solution of the system (33). 

Therefore, Θ is the solution of the system (1). Then: 
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𝜌(Λ, Θ) ≤
1

1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉
𝜌(ΩΛ, Λ) ≤

𝜉

1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉
  (39) 

 

From ρ definition, the Eq. (33) holds. This completes the 

proof. 

 

3.2 Semi-U-H-R and U-H stabilities for the system (5) 

 

The study will investigate in this segment the stabilities of 

U-H and semi-U-H-R in C1[0,1] for the system in Eq. (5). 

 

Theorem 3.3 Assume that a function ζ is continuous non-

decreasing defined as ζ: [0, 1] → (0, ∞) and there is ξ ∈ [0, 1) 

satisfying: 

 

∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝜁(𝜍)𝑑𝜍 ≤ 𝜉𝜁(𝑣)  (40) 

 

Let є1, є2
k, є2

h > 0  for (ϵ1 + ϵ2
k + ϵ2

h)ξ < 1 . Assume that 

h: [0,1] × ℝ → ℝ  and Υ,Ψ: [0,1] × [0,1] × ℝ → ℝ  are 

continuous functions satisfying: 

 

{

|𝑔(𝑣, ℎ1) − 𝑔(𝑣, ℎ2)| ≤ 𝜖1|ℎ1 − ℎ2|, 𝑣 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

|Υ(𝑣, 𝜍, ℎ1) − Υ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
𝑘|ℎ1 − ℎ2|, 𝑣, 𝜍 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

|Ψ(𝑣, 𝜍, ℎ1) − Ψ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
ℎ|ℎ1 − ℎ2|, 𝑣, 𝜍 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

 (41) 

 

If Λ ∈ 𝐶1[0,1] satisfies: 

 

|Λ′(𝑣)+𝑐𝐷0+
𝛼 Λ(𝑣) − 𝑔(𝑣, Λ(𝑣)) −

∫ Υ(𝑣, 𝜍, Λ(𝜍))𝑑𝜍
𝑣

0
− ∫ Ψ(𝑣, 𝜍, Λ(𝜍))𝑑𝜍

1

0
| ≤ 𝜃, 𝑣 ∈

[0,1]  

(42) 

 

with θ>0, thus there is Θ(v) solution of the system (5) satisfies: 

 
|Λ(𝑣) − Θ(𝑣)| ≤

𝜃𝜁(𝑣)

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
|∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝑑𝜍|, 𝑣 ∈

[0,1]  

(43) 

 

This means that under above conditions, the system (5) has 

the semi-U-H-R stability. 

 

Proof. Consider Ω: 𝐶1[0, 1] → 𝐶1[0, 1], defined by: 

 

(Ω𝜔)(𝑣) = 𝜂 + ∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 −

𝜍)1−𝛼) [𝑔(𝑠, 𝜔(𝜍)) + ∫ Υ(𝜍, 𝜏, 𝜔(𝜏))𝑑𝜏
𝜍

0
+

∫ Ψ(𝜍, 𝜏, 𝜔(𝜏))𝑑𝜏
1

0
] 𝑑𝜍  

(44) 

 

where, 𝑣 ∈ [0, 1], 𝜔 ∈ 𝐶1[0, 1]. 
For any 𝜔,𝑤 ∈ 𝐶1[0, 1],then it has: 

 

𝜌(Ω𝜔, Ω𝜔) ≤ (𝜖1 + 𝜖2
𝑘 + 𝜖2

ℎ)𝜉𝜌(𝜔,𝑤) (45) 

 

From (є1 + є2
𝑘 + є2

ℎ) 𝜉 <  1, then Ω is strictly contractive 

in (𝐶1[0, 1], 𝜌). 
Next, suppose that Λ(𝑣) ∈ 𝐶1[0,1] satisfies Eq. (42). By Eq. 

(42) and Lemma 3.1 it can get: 

 

|Λ(𝑣) − 𝜂 − ∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼) [𝑔(𝑠, Λ(𝜍)) +

∫ Υ(𝜍, 𝜏, Λ(𝜏))𝑑𝜏
𝜍

0
+ ∫ Ψ(𝜍, 𝜏, Λ(𝜏))𝑑𝜏

1

0
] 𝑑𝜍| ≤

𝜃|∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝑑𝜍|, 𝑣 ∈ [0,1]  

(46) 

From the continuity of Mittag-Leffler function, we have 

| ∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)𝑑𝜍|

𝑣

0
 is a continuous nonnegative 

function. From the Eqns. (44) and (46), then: 

 

|(ΩΛ)(𝑣) − Λ(𝑣)| ≤ 𝜃|∫ 𝐸1−𝛼,1
𝑣

0
(−(𝑣 − 𝜍)1−𝛼)𝑑𝜍|  (47) 

 

Since ζ is a continuous function, it can get: 

 

𝜌(ΩΛ, Λ) = sup
𝑣∈[0,1]

|(ΩΛ)(𝑣)−Λ(𝑣)|

𝜁(𝑣)
≤

sup
𝑣∈[0,1]

𝜃|∫ 𝐸1−𝛼,1(−(𝑣−𝜍)
1−𝛼)𝑑𝜍

𝑣
0 |

𝜁(0)
< ∞  

(48) 

 

Let 𝐶∗[0,1] = {𝑦 ∈ 𝐶1[0,1]: 𝜌(ΩΛ, 𝑦) < ∞}. 
Applying the Banach fixed-point theorem, thus there is a 

solution Θ ∈ 𝐶∗[0,1] such that ΩΘ=Θ. That means Θ(v) is a 

unique solution of the system (5). 

From the Banach fixed-point theorem and Eq. (48), then: 

 

𝜌(Λ, Θ) ≤
1

1−(𝜖1+ 𝜖2
𝑘+𝜖2

ℎ)𝜉
𝜌(ΩΛ, Λ) ≤

𝜃|∫ 𝐸1−𝛼,1(−(𝑣−𝜍)
1−𝛼)𝑑𝜍

𝑣
0 |

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
  

(49) 

 

Thus, by the definition of ρ, then: 

 
|Λ(𝑣) − Θ(𝑣)| ≤

𝜃

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
𝜁(𝑣)|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)

1−𝛼)𝑑𝜍
𝑣

0
|  (50) 

 

where, 𝜁(𝜐)|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)

𝑣

0
𝑑𝜍| is a continuous non-

negative function. This completes the proof. 

 

Remark 3.4 For any 𝑣 ∈ [0,1], ∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)𝑑𝜍

𝑣

0
 

is real number convergent series. Then, there exists 𝑁 > 0, 

such that: 

 

|∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)

𝑣

0
𝑑𝜍| < 𝑁  (51) 

 

Theorem 3.5 Assume that є1, є2
𝑘 , є2

ℎ, 𝜉  are constants for 

which є1 >  0, є2
𝑘 > 0, є2

ℎ > 0, 0 ≤ 𝜉 < 1, (𝜖1 + 𝜖2
𝑘 + 𝜖2

ℎ)𝜉 <
1. Assume that g, Υ, and Ψ are continuous functions, such that: 

 

{

|𝑔(𝑣, ℎ1) − 𝑔(𝑣, ℎ2)| ≤ 𝜖1|ℎ1 − ℎ2|, 𝑣 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

|Υ(𝑣, 𝜍, ℎ1) − Υ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
𝑘|ℎ1 − ℎ2|, 𝑣, 𝜍 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

|Ψ(𝑣, 𝜍, ℎ1) − Ψ(𝑣, 𝜍, ℎ2)| ≤ 𝜖2
𝑘|ℎ1 − ℎ2|, 𝑣, 𝜍 ∈ [0,1], ℎ1, ℎ2 ∈ ℝ

 

 

Let 𝜻: [𝟎, 𝟏]  →  (𝟎,∞)  be a continuous non-decreasing 

function, and satisfies: 

 

∫ 𝐸1−𝛼,1(−(𝑣 − 𝜍)
1−𝛼)𝜁(𝜍)𝑑𝜍 ≤ 𝜉𝜁(𝑣)

𝑣

0
  (52) 

 

If 𝚲 ∈ 𝑪𝟏[𝟎, 𝟏]  satisfies (4), with θ>0, then there is a 

solution Θ(v) of the system (5) such that: 

 

|Λ(𝑣) − Θ(𝑣)| ≤
𝑁𝜁(1)

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
𝜃, 𝑣 ∈ [0,1]  (53) 

 

Proof. Since ζ is a continuous non-decreasing function, 

 

𝜁(𝑣) ≤ 𝜁(1), 𝑣 ∈ [0, 1] (54) 

 

By theorem 3.3, Eqns. (43) and (51), then it can obtain: 
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|Λ(𝑣) − Θ(𝑣)| ≤
𝜃

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
𝜁(𝑣)|∫ 𝐸1−𝛼,1(−(𝑣 −

𝑣

0

𝜍)1−𝛼)𝑑𝜍| ≤
𝑁𝜁(1)

[1−(𝜖1+𝜖2
𝑘+𝜖2

ℎ)𝜉]𝜁(0)
𝜃  

(55) 

 

Theorem 3.5 shows that the system (5) has the U-H stability. 

 

3.3 Illustrative example 

 

Example 1. Let’s assume a fractional Volterra-Fredholm 

system as follows 

 

Θ′(𝑣)+𝑐𝐷0+

1

2 Θ(𝑣) =
1

100
[𝑣 cos Θ (𝑣) +

Θ(𝑣) sin 𝑣] +
1

50
∫ sin Θ(𝜍)𝑑𝜍 +

1

50
∫ cos Θ(𝜍)𝑑𝜍,
1

0

𝑣

0
  

(56) 

 

Θ(0) = 0 (57) 

 

By comparison with the system (5), it can get: 

 

𝛼 =
1

2
, 𝑔(𝑣, Θ(𝑣)) =

1

100
[𝑣 cosΘ(𝑣) +

Θ(𝑣) sin 𝑣], Υ(𝑣, 𝜍, Θ(𝜍)) =
1

50
sin Θ(𝜍) ,Ψ(𝑣, 𝜍, Θ(𝜍)) =

1

50
sin Θ(𝜍) ,Ψ(𝑣, 𝜍, Θ(𝜍)) =

1

50
cos Θ (𝜍).  

(58) 

 

Then: 

 

{
 
 

 
 |𝑔(𝑣, ℎ1) − 𝑔(𝑣, ℎ2)| ≤

1

50
|ℎ1 − ℎ2|, ℎ1, ℎ2 ∈ ℝ,𝑣 ∈ [0,1]

|Υ(𝑣, 𝜍, ℎ1) − Υ(𝑣, 𝜍, ℎ2)| ≤
1

50
|ℎ1 − ℎ2|, ℎ1, ℎ2 ∈ ℝ, 𝑣, 𝜍 ∈ [0,1]

|Ψ(𝑣, 𝜍, ℎ1) − Ψ(𝑣, 𝜍, ℎ2)| ≤
1

50
|ℎ1 − ℎ2|, ℎ1, ℎ2 ∈ ℝ, 𝑣, 𝜍 ∈ [0,1]

 (59) 

 

Let 𝜁(𝜐)  =  𝑒𝑣, it can obtain: 

 

∫ 𝐸1
2
,1
(−(𝑣 − 𝜍)

1

2) 𝑒𝜍
𝑣

0
𝑑𝜍 < 𝑒𝑣 − 1 <

3

4
𝑒𝑣 , 𝑣 ∈

[0,1]  
(60) 

 

Here, it has є1 = є2
𝑘 = є2

ℎ =
1

50
, 𝜉 =

3

4
, and (є1 + є2

𝑘 +

є2
ℎ)𝜉 =  0.045 < 1. 

It can see that all the conditions in Theorems 3.2 and 3.5 are 

satisfied. Then, the system (56) is U-H stability, U-H-R 

stability and semi-U-H-R stability. 

 

 

4. CONCLUSIONS 

 

The objective of this study was to provide and demonstrate 

a novel stability theorem for the nonlinear Volterra-Fredholm 

integro-differential equation with Caputo fractional derivative 

utilising the weighted space method and fixed-point technique. 

The study specifically examines the H-U-R stability and semi-

U-H-R stability results.  

Besides, a class of nonlinear fractional Volterra-Fredholm 

integro-differential equations with initial conditions is 

discussed. By means of the Banach fixed-point techniques and 

weighted space, stability of the fractional nonlinear Volterra–

Fredholm system has been tested. An illustrative example that 

demonstrates the applicability of the results has been included. 

Discussing U-H-Mittag-Leffler stability [22] and finite-

time stability [23] for the -Hilfer fractional Volterra-Fredholm 

integro-differential equations with time-varying delay terms 

would be a delightful extension of the current results. This will 

be the focus of future research. 
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