Size-Dependent Melting Point of Nanoparticles Based on Bond Number Calculation

Size-Dependent Melting Point of Nanoparticles Based on Bond Number Calculation

S. ZhangL. Zhang  

School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China

Department of Materials Science and Engineering, Jilin JianZhu University, Changchun 130000, China

Corresponding Author Email: 
zhangshuaixx@sina.com
Page: 
17-22
|
DOI: 
http://dx.doi.org/10.18280/mmep.020404
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

An integrated model based on bond number and bond strength in a system with a cubo-octahedral structure is developed to predict the size-dependent thermal characteristics of nanoparticles.Without any adjustable parameters, this model can be used to predict the melting point and cohesive energy of low-dimensional materials, suggesting that both depend on the size and on the atomic distance. The good agreement of the theoretical prediction with the experimental and molecular dynamic simulation results confirms the validity of the cubo-octahedron in describing the thermodynamic behaviors of nanoparticles even without considering their crystalline structures.

Keywords: 

Metals, Anostructures, Crystal structure, Thermodynamic properties.

1. Introduction
2. Model
3. Results and Discussions
4. Conclusion
Acknowledgments

The authors acknowledge the financial supports of the National Natural Science Foundation of China under (Grant No. 51101067), Natural Science Foundation of Anhui Higher Education Institutions of China (No. KJ2012B159) and Huaibei Normal University(No. 700435).

  References

[1] G. Schmid, M. Baumle, M. Geerkens, I. Helm, C. Osemann, T. Sawitowski, Chem. Soc. Rev. 28 (1999) 179.

[2] J.M. Montejano-Carrizales, F. Aguilera-Granja, J.L. Moran-Lopez, Nanostruct. Mater., 8 (1997) 269.

[3] F. Baletto, R. Ferrando, Rev. Mod. Phys., 77 (2005) 371.

[4] Q. Jiang, Z. Zhang, J.C. Li, Chem. Phys. Lett., 322 (2000) 549.

[5] S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Phys. Chem. Chem. Phys., 13 (2011) 10652.

[6] P. Buffat, J.P. Borel, Phys. Rev. A 13 (1976) 2287.

[7] V.P. Skripov, V.P. Koverda, V.N. Skokov, Phys. Status Solidi, A 66 (1981) 109.

[8] G. Guisbiers, Nanoscale Res. Lett., 5 (2010) 1132.

[9] Safaei, J. Nanopart. Res., 12 (2010) 759.

[10] M. Zhang, M. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen, Phys. Rev., B 62 (2000) 10548.

[11] K. Hoshino, S. Shimamura, Philos. Mag., A 40 (1979) 137.

[12] V.I. Ivlev, Sov. Phys. Solid State, 33 (1991) 909.

[13] Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Phys. Rev. Lett., 87 (2001) 055703.

[14] B. Vekhter, R.S. Berry, J. Chem. Phys., 106 (1997) 6456.

[15] R. Defay, I. Prigogine, Surface Tension and Adsorption, Wiley, New York, 1951.

[16] K.F. Peters, J.B. Cohen, Y.-W. Chung, Phys. Rev., B 57 (1998) 13430.

[17] P.Z. Pawlow, Phys. Chem., 65 (1909) 1.

[18] H. Reiss, I.B. Wilson, J. Colloid Sci., 3 (1948) 551.

[19] H. Sakai, Surf. Sci., 351 (1996) 285.

[20] C.R.M. Wronski, J. Appl. Phys., 18 (1967) 1731.

[21] K.J. Hanszen, Z. Phys., 157 (1960) 523.

[22] H. Reiss, P. Mirabel, R.L. Whetten, J. Phys. Chem., 92 (1988) 7241.

[23] P.R. Couchman, W.A. Jesser, Nature (London) 269 (1977) 481.

[24] R.R. Vanfleet, J.M. Mochel, Surf. Sci., 341 (1995) 40.

[25] F.G. Shi, J. Mater. Res., 9 (1994) 1307; C.Q. Sun, Prog. Mater. Sci., 54 (2009) 179.

[26] C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, J. Phys. Chem., B 106 (2002) 10705.

[27] Q. Jiang, H.M. Lu, M. Zhao, J. Phys. Condens. Matter, 16 (2004) 521.

[28] F. Guinea, J.H. Rose, J.R. Smith, J. Ferrante, Appl. Phys. Lett., 44 (1984) 53.

[29] M.A. Shandiz, A. Safaei, S. Sanjabi, Z.H. Barber, Solid State Commun, 145 (2008) 432.

[30] M. Mirjalili, J. Vahdati-Khaki, J. Phys. Chem. Solids, 69 (2008) 2116.

[31] D. Liu, J.S. Lian, Q. Jiang, J. Phys. Chem., C 113 (2009) 1168.

[32] H. Li, M. Zhao, Q. Jiang, J. Phys. Chem., C 113 (2009) 7594. and references therein.

[33] M.J. Yacamán, J.A. Acencio, H.B. Liu, J. Gardea-Torresdey, J. Vacuum Sci. Technol., B 19 (2001) 1091.

[34] Y. Shibuta, T. Suzuki, J. Chem. Phys., 129 (2008) 144102.

[35] Y. Qi, T. Ça ? gin, W.L. Johnson, W.A. Goddard, J. Chem. Phys., 115 (2001) 385.

[36] F. Ding, A. Rosén, S. Curtarolo, K. Bolton, Appl. Phys. Lett., 88 (2006) 133110.

[37] Y.G. Chushak, L.S. Bartell, J. Phys. Chem., B 105 (2001) 11605.

[38] V.I. Levitas, K. Samani, Nat. Commun., 2 (2011) 284.

[39] V.I. Levitas, M. Javanbakht, Phys. Rev. Lett., 105 (2010) 165701.

[40] Table of Periodic Properties of the Elements, Sargent-Welch Scientific Company, Skokie, 1980.

[41] S.L. Lai, J.R.A. Carlsson, L.H. Allen, Appl. Phys. Lett., 72 (1998) 1098.

[42] J. Sun, S.L. Simon, Thermochim. Acta,463 (2007) 32.

[43] C.J. Coombes, J. Phys. F Metal. Phys. 2 (1972) 441.

[44] T.B. David, Y. Lereah, G. Deutscher, R. Kofman, P. Cheyssac, Phil. Mag., A 71 (1995) 1135.

[45] F. Cellestini, R.J.M. Pellenq, P. Bordarier, B. Rousseau, Z. Phys., D 37 (1996) 49.

[46] H.K. Kim, S.H. Huh, J.W. Park, J.W. Jeong, G.H. Lee, Chem. Phys. Lett., 354 (2002) 165.

[47] G.L. Allen, R.A. Bayles, W.W. Gile, W.A. Jesser, Thin Solid Films, 144 (1986) 297.

[48] S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Phys. Rev. Lett., 77 (1996) 99.

[49] G. Kellermann, A.F. Craievich, Phys. Rev., B 65 (2002) 134204.