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1. INTRODUCTION 

The thermodynamic behavior of nanocrystals differs from 

that of their corresponding bulk materials mainly because of 

the large surface-to-volume ratio that strongly influences the 

chemical [1] and physical properties of the nanocrystals [2, 

3]. The broken bonds of surface atoms inevitably lead to the 

instability of materials at the nanoscale (e.g., decreased 

melting point and cohesive energy of ultrafine metallic 

particles with decreased size). Thus, a number of excellent 

models for size and shape dependence of the melting 

behavior of a nanosolid have been developed in terms of 

classical thermodynamics and modern molecular dynamics 

[4-26]. In these models, the most important consideration is 

the surface-to-volume ratio because the vibration frequency 

of surface atoms is distinct from that of the inner ones. An 

exponential or linear relationship between the material size 

and thermodynamic function has been obtained, and the good 

reasonability of the established models has been proven. 

However, the bond characteristics of a system are unclear. In 

fact, the bond state of a system is directly related to the 

thermal properties. The atomic cohesive energy can be 

obtained from the average coordination number and bond 

strength per atom. In other words, if the bond number and 

bond strength are known, the thermodynamic function can be 

easily determined. Thus, the cohesive energy E(D), where D 

is the nanocrystal size, can be expressed as follows [26]: 
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Where Ba and Ei(D) are the bond number and average bond 

strength of a nanocrystal, respectively. Considering the 

broken bonds in nanocrystals, Ba decreases with decreased 

size, which inevitably results in decreased E(D) function 

based on Eq. (1). Notably, the broken bonds in a system rely 

on surface structure (e.g., the number of broken bonds in the 

(111), (110), and (100) faces of the fcc crystal are 3, 4, and 6, 

respectively) [27]. This result indicates that Ba is related to 

size D and depends on the nanocrystal structure. Simi-larly, 

the E(D) function can be easily considered. 

 The cohesive energy that directly describes the bond 

strength is an effective variable for determining the thermal 

stability of nanocrystals. With size reduction, the decline in 

the melting point Tm(D) is an obvious phenomenon that 

describes the lowered thermal stability of nanocrystals. In 

fact, an empirical correlativity exists between the E0 and Tm0 

functions by defining E0 and Tm0 as the bulk cohesive energy 

and bulk melting point, respectively [28]: 

 

m0 0 B0.032 /T E k                                                          (2.1) 

 

where kB is the Boltzmann constant. E0 can be written as 

E0= BtEi0 based on Eq. (1), where Bt and Ei0 are the total 

bond number without broken bonds and the average single 

bond energy for bulk crystal, respectively. According to 

Eq. (2.1), a similar treatment for the relationship between 

the E(D) and Tm(D) functions can be expected as a first 

approximation; thus,  
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Therefore, combining Eqs. (1) and (2) with the 

expression for the aforementioned above E0 function 

yields, 
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Hence, four variables must be definitely known to 

obtain the Tm(D) value. Generally, without considering 

bond relaxation,Ei(D)≈ Ei0 can be assumed for simplicity. 

Considering this approximation, Sanjabi et al. [29] and 

Vahdati-Khaki et al. [30] respectively developed the 

E(D)/E0 and Tm(D)/Tm0 models by introducing the mean 

coordination number concept ( Z p /Zb , where Z p and Zb 

show the mean coordination number of a nanocrystal and 

its corresponding bulk, respectively); thus,  
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The value of Z p /Zb in Eq. (4) is equal to that of Ba /Bt 

in Eq. (3). The validity of Eq. (4) has been confirmed by 

both Sanjabi et al. [29] and Vahdati-Khaki et al. [30], 

particularly when compared with metallic nanoparticles 

with D > 10 nm (where Ei(D)≈ Ei0 and a small difference 

can be widely accepted). However, neglecting bond 

relaxation inevitably leads to errors in the E(D) function, 

especially for nanoparticles with D < 10 nm. Thus, the 

effect of bond relaxation on cohesive energy needs to be 

determined to establish a reasonable model for the Tm 

(D)/Tm0 or E(D)/E0 function. 

 In this work, Ba/Bt is determined by introducing a 

cubooctahedral structure and by considering reasonable 

bond relaxation. Models for Tm(D)/Tm0 and E(D)/E0 are 

also developed. The model predictions are found to be 

consistent with experimental and simulation results for 

metallic nanoparticles. The validity of the model is also 

confirmed within the full size range. 

 

 

2. MODEL 

 

To determine the effect of surface relaxation on E(D), 

which is neglected in Eq. (4), E(D) is considered as an 

energetic sum of the surface and interior atoms. Thus, 

E(D)=  （ E0+ ） ）+（1 ） E0 or: 

 

0 0
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where   is surface/volume ratio. The surface energy   

in Eq. (5) can be calculated by relating the bond deficit 

with the surface bond relaxation, which has been 

previously modeled [31]. Thus, 
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where Zs is the mean coordination number of the surface 

atoms of a cluster. 

With the two boundary conditions of 1 with Zs ≈ Zsb 

(where Zsb denotes the surface atom coordination number 

of bulk), and 1  , inserting Eq. (6) into Eq. (5) yields 

the two limit cases for E(D)/E0 : 
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Letting Ns and Ni  be the number of surface atoms and 

inner atoms, respectively, the common relationship is  

 

Ba /Bt = (NsZs + NiZb )/(NZb ),  

 

where Ni = N   Ns and Ns/N=d.  

 

Thus, 
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From Eq. (8), Ba /Bt ≈ Zs /Zb when 1  . When 

0  ,Ba /Bt   (Ba /Bt )1/2  1. Substituting these 

results into Eq. (6) enables E(D) to be rewritten as, 

 
1/2( ) / ( / )b a tE D E B B                                                      (9) 

 

Clearly, Eq. (8) applies to both limit cases of Eqs. (5)  

and (6) and is even confirmed applicable to any D [31].   

However, the effect of surface relaxation on Ei(D) in the 

deduction of Eq. (9) is overestimated because only 

attractive forces are taken into account [31], whereas it is 

underestimated in Eq. (4). To compensate for the 

deficiency in Eqs. (4) and (9), as a first approximation, a 

rough estimate of E(D) values can be easily determined by 

considering the average effect of Eqs. (4) and (9): 
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Hence, as long as Ba /Bt is known, E(D) or Tm (D) can be 

obtained.However, the shape and size of the nanoparticle 

must be known because both of them determine the Ba and 

Bt values. As is known, nanoparticles are a state of matter 

that has properties different from either molecules or bulk 

solids, and thus their shape and structure of nanoparticles 

are strongly functions of the number of atoms (N) in a 

system [32,33]. However, a nanoparticle with certain size 

usually has similar spherical shape in order to minimize 

surface energy although they could be in different 

structures [32], since surface energy directly determines 

the stability of different shapes and sizes, especially for 

the particles from ~1 nm to ~100 nm. Moreover, with size 

dropping, nanoparticles usually take the densest packing 

structure, for example, Na and Mo nanoparticles would 

have an FCC or more like icosahedron structures and Co 

nanoparticles with 4 60 N  60 have an icosahedron 

structure [32], while the structure becomes unstable for a 

large number of atoms and transforms into a cubo-

octahedron, which is just a patch of the fcc lattice [2]. 

Here, the ratio of surface to volume  ,where  sN N , is 

used as mentioned in Jiang’s work [32]. Since   is the 

simplest function to describe the shape effect of 

nanoparticles,the smaller the   value, the more spherical 

the shape, and thus the smaller surface energy. It is clear 

that the same   value for both cuboctahedron and 

icosahedron is found [32] and this   is the smallest value 

compared with other shapes. Thus, taking cuboctahedral 

shape to describe small nanoparticles becomes in valid 

within the acceptable error range. As size increases, 

0   for any shape, that is to say the shape effect will 

disappear for larger particles. In addition, it is commonly 
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observed that most of fcc particles correspond to the 

cuboctahedral shape [33], and even can be extended to 

most closely packed materials, which is confirmed in Ref. 

[30] where the most appropriate structure of the 

nanoparticles can also be cubo-octahedron. Based on the 

discussion above, taking cuboctahedral structure as the 

shape of nanoparticles in this work is reasonable. 

Next, the geometrical characteristic of cuboctahedral 

shape is introduced.In fact,cuboctahedral shape is a 

truncated octahedron of fcc crystals, where surface 

consists of 6 (100) facets and 8 (111) facets with distinct 

surface energy since the different coordination number on 

this two facets.However, we need not consider this 

difference in this work, because the parameter of bond 

number Ba or Bt has included the coordination number of 

all atoms at different site and thus considered the surface 

energy difference.Here we just assume that the cubo-

octahedral structure has a central site,around which the 

nanoparticles grow (i.e., the number of concentric shells 

(n) around the central site defines the nanoparticle 

size).The zeroth order corresponds to the central site. The 

first-order nanoparticle is formed by adding a shell with a 

number of sites such that they cover the central site and 

form a surface with a cubooctahedral shape. According to 

this method, the Ba/Bt of cubooctahedral nanoparticles can 

be determined [30], 
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In Eq.(11), the vacancies or defects in the nanoparticles 

cannot be easily calculated. The relation between the 

diameter D and number of shells n can be deduced as 

follows: 

 

(1 2 ) D h n                                                                    (12) 

 

where h is the atomic distance. 

Substituting Eq.(11) into Eq.(10) enables the 

determination of the Tm(D) and E(D) function of the 

nanoparticles: 
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Where  1 2 1 n D h . 

 

 

3. RESULTS AND DISCUSSIONS 

 

Figure 1 compares the predictions based on Eq. (13) 

with the experimental and molecular dynamic simulation 

results for the Tm (D) values of the fcc elements, such as 

Al, Au, Pb, or Ar nanoparticles. As expected, Tm(D) 

decreases with decreased D because of the reduced Ba 

value. Figure1 also shows the good agreement of the 

predictions with the experimental and molecular dynamic 

simulation results. This finding suggests the validity of the 

cubooctahedron in describing the melting behavior of fcc 

nanoparticles. For comparison, the estimation of the 

( )mT D  function of the icosahedral structure with /a tB B  

=  2 3 220 15 7 20 30 22 6    n n n n n n [30] is also 

plotted as red lines in Figure 2. The small difference 

between the icosahedron and cubo-octahedron models 

further confirms the success of the cubo-octahedron in 

predicting Tm(D) values even for small nanoparticles with 

icosahedral structures. Eq. (13) is also used to estimate the 

E(D) values for W and Mo nanoparticles, as shown in 

Figure 3 for comparison with the corresponding 

experimental results. Considering that D ,then 

0( ) E D E  because 1a tB B . Thus, the broken bond 

number can be neglected for larger D values.To some 

extent, the agreement between the model predictions and 

experimental results for W nanoparticles with 1D nm, 

suggests that small W particles may have closely packed 

structures, although their bulk structure is not closely 

packed. As expected from the experimental results, the 

simulation observations [34] for both W and Mo are also 

found to be consistent with the model predictions using Eq. 

(13), as shown in Figure 3. In fact, Eq. (13) can also be 

used for clusters with small atomic numbers, such as 

Ni[35], Fe [36], and Au[37]. These results show the same 

depression in melting point as a function of the inverse of 

particle size. Eq. (13) is further proved to be reasonable 

based on the results shown in Figure 4 for tetragonal 

elements, such as In and Sn, and even for the rhobohedral 

Bi element.(For interpretation of the references to color in 

this paragraph, the reader is referred to the web version of 

this article.) 

Figs.1—4 show the suitability of the cubo-octahedron, 

especially for larger particles with D > 10 nm. The reason 

is that the change in bond energy compared with that in 

the bulk interior is small, and that a tB B for large 

particles.Notably, the melting point in Eq.(13) is 

considered to be proportional to the cohesive energy, 

which means that at the melting temperature, the total 

atomic bonding energy in the solid particles is equal to 

that in the liquid ones.Hence, all reported melting points 

in this work can be regarded as the phase-transformation 

temperature from solid to liquid,although the actual 

melting process is not considered. In fact,melting is a 

complicated process. As presented in Refs. [38,39], 

melting occurs from the surface to the interior for large 

particles only when 0       sv sl lv  (where  sv
,  sl

, 

and  lv
are the solid-gas, solid-liquid, and liquid-gas 

interface energies, respectively),or through the entire 

volume for particles a few nanometers in size. As the 

temperature increases and gradually approaches the 

melting point, the thickness of the surface-melting layer 

increases depending on the pushing of the solid-melt 

interface into the interior. A critical value exists for the 

surface melting layer thickness, where the energy barrier 

for melting is the largest. The effect of this critical value 

on the melting point and even its intrinsic relationship 

with the particle size shall be clarified in our next work. 

This effect is similar to the demonstration in Ref. [38] that 

the ratios of the width of the solid-gas interface to the 

width of the solid-melt interface also play an important 

role on melting point. 
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Figure 1. Tm(D) function for the nanoparticles of fcc 

elements in terms of Eq. (13) (black solid lines) where h = 

0.3164 nm, 0.3188 nm, 0.3898 nm and 0.4249 nm [40], 

respectively for Al, Au, Pb and Ar. Symbols :▲[41],● 

[42], △ [6], ►[43], [44] show the experimental results, 

and ◄ [45] the molecular dynamic simulation ones. 

 
Figure 2. The influence of Al particle shape on the size 

effect of melting temperature with the help of Eq. (13). 

For icosahedral and cubo-octahedral shape, the similar 

form to Eq.(10) is sure but the determination of bond 

number which can be found in Ref. [13] 

 

The assumption used in Eq. (10) is not always suitable 

for small particles, because only the surface bond 

relaxation is considered. In fact, except for surface atoms, 

interior atoms also become unstable compared with those 

of the bulk interior, resulting in an overestimation of Eq. 

(13). The defect or vacancy in a nanoparticle (i.e.,the 

result of the ideal crystal using Eq.(13)) is also not 

considered in this work. This non-consideration may lead 

to a small overestimation of Eq. (13), which is necessary 

for small particles, as presented in Figs. 1—4. Despite the 

existing errors, Eq. (13) can still be regarded as a valid 

and simple way to predict Tm(D) or E(D) values even 

within the full size range. For small nanoparticles with    

5D nm, the validity of Eq.(13) implies that the 

nanoparticles have closely packed structures regardless of 

the bulk of the structure. According to Eq. (13), the trend 

of the Tm(D) or E(D) values with size depends on the 

atomic distance when D is given. Thus, to determine the 

contribution of atomic distance, In, Sn, and Bi 

nanoparticles are compared and small differences are 

observed (Figure 5). This result indicates that the atomic 

distance effect can be ignored for simplicity. From a 

thermodynamic perspective, the melting point is usually 

determined in terms of the surface energy, but the reverse 

is also true. Hence, the scale effect on the surface energy 

of nanoparticles can also be determined using Eq. (13).  

 

 
 

Figure 3. The comparison of E(D) values of model 

prediction for W and Mo nanoparticles based on Eq. (13) 

(solid lines) with h = 0.3098 nm and 0.290 nm [34], where 

experimental results and ▼ [46], and simulation results □ 

and ○ [34] are clear. 

 
Figure 4. Model predictions of Tm(D) according to Eq. (13) 

for In, Sn, and Bi nanoparticles,where h = 0.3682 nm, 

0.3724 nm and 0.4073 nm [40], respectively. The symbols 

☆[10], ◇[47], ○[48], △ [47], and , □[49] show the 

experimental results. 

 

To further confirm the validity of Eq. (13), the model 

predictions are compared with the theoretical results of 

Safaei and Shandiz [29] and Sun et al. [26] in Figure 6. In 

fact, all of the models work well in simulating the size-

dependent trends of melting points since similar 

consideration is taken, that is atomistic insight into this 
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melting matter from the perspective of equilibration 

between the thermal energy of melting and the cohesive 

energy of an atom at different site and link all the melting 

behaviors involved to the effect of surface coordination 

number (CN) imperfection. Three models do not need to 

consider the latent energy of fusion, the mass density, and 

the surface/interface energy of different phases. Actually, 

the surface and interface energy and the local mass density 

of liquid and solid are functions of atomic separation and 

bond energy that are subject to the effect of CN 

imperfection [26]. However, the difference among three 

models predictions is inevitable as shown in Figure6. 

Although the same shape of cuboctahedron for 

nanoparticles is used, the ignorance of the bond energy 

increases as a result of surface CN imperfection, induces 

the underestimate of Safaei and Shandiz’s model, while 

the extent of underestimation is more significant in Sun’s 

model predictions compared with Eq. (13) in Figure 6. In 

Sun’s model, the effective coordination number usually 

 
Figure 5. The comparison of Tm (D) values for In (red 

line), Sn (blue line) and Bi (green line) nanoparticles 

accounts for the effect induced by atomic distance. (For 

interpretation of the references to color in this figure 

legend, the reader is referred to the webversion of this 

article.) 

 

 
 

Figure 6. The comparison of model predictions of Eq. 

(13) (solid line), the theoretical results from Shandiz and 

Safaei [29] (dashed line) and Sun et al. [26] (dotted line) 

for Al nanoparticles, with the experimental results denoted 

as the same symbols with that in Figure 1 caption. 

Take the value of z1 = 4and z2 = 6 respectively for the 

outermost two atomic layers; and at the lower end of size 

limit of a spherical dot, z1 takes 3 or smaller. For Al 

nanoparticles, outermost three atomic layers are 

considered as surface layers with CN imperfection, with z1 

= 4, z2 = 6 and z3 = 8 being used. So the bond 

imperfection in Sun’s model is more grievous than our 

model. Except this, the most different thing is the shape 

factor, and spherical shape is taken in Sun’s model [26]. 

That is why the better agreement with experimental results 

of Eq. (13) than that of Sun’s model. However, we would 

like to indicate that all of the models are correct, relating 

the melting to the cohesive energy, though they are based 

on different premises. Compared with the existing models, 

the shape (or structure), bond imperfection of atoms at 

different site and the corresponding bond relaxation effect 

are considered in the current premise. Secondly, Eq. (13) 

involves almost no freely adjustable variables but the 

equilibrium atomic distance and particle size, that is 

0( ) /m mT D T follow the change of the portion of surface 

atoms of the solid. However, the melting point varies from 

site to site if the sample contains atoms with different CN 

[26]. Thus, shape is an important factor to determine 

melting point of nanoparticles especially for small size, 

while it has smaller influence on the values of 

0( ) /m mT D T since small errors induced fromsurface to 

volume ratio fordifferent shape [32]. Thus, based on the 

consideration of cuboctahedral shape, Eq. (13) can be used 

for describing the extend of melting point decrease, within 

the acceptable error range, for many metallic nanoparticles 

and even metallic clusters even if their structures or 

shapes, surface energy, and even other thermodynamic 

information are unknown. 

 

 

4. CONCLUSION 

 

Based on bond number calculations, a united model 

indepen-dent of any adjustable parameter is developed for 

predicting the size-dependent melting point or the 

cohesive energy of nanoparticles. With decreased size, 

( )mT D or ( )E D  decreases with decreased bond number. 

The agreement of the theoretical predic-tions with the 

experimental and simulation results for Al, Au, Pb, Ar,W, 

In, Sn, and Bi nanoparticles confirms the validity of the 

model. 
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