Forecast of the Trend in Sales Data of a Confectionery Baking Industry Using Exponential Smoothing and Moving Average Models

Forecast of the Trend in Sales Data of a Confectionery Baking Industry Using Exponential Smoothing and Moving Average Models

Rasaq A. Kazeem* Moses O. Petinrin Peter O. Akhigbe Tien Chien Jen Esther T. Akinlabi Stephen A. Akinlabi Omolayo M. Ikumapayi

Department of Mechanical Engineering, University of Ibadan, Ibadan 200005, Nigeria

Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa

Department of Industrial and Production Engineering, University of Ibadan, Ibadan 200005, Nigeria

Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle NE7 7XA, United Kingdom

Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado Ekiti 360101, Nigeria

Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, DFC 2092, South Africa

Corresponding Author Email: 
ra.kazeem@ui.edu.ng
Page: 
1-13
|
DOI: 
https://doi.org/10.18280/mmep.100101
Received: 
19 July 2022
|
Revised: 
28 September 2022
|
Accepted: 
3 October 2022
|
Available online: 
28 February 2023
| Citation

© 2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

Starch-containing foods such as bread, pastries, and cakes are usually baked at a moderately high temperature in an oven. When these products are later exposed to room temperature, the associated gelatinized starch begins to harden which causes retrogradation and molecular realignment. Due to this circumstance, manufacturers need to have a fairly accurate estimate of products demand in order to determine the precise amount of baking powder and additives for use in their production so as not to incur losses in their business arising from the stale and consequentially unsalable products. This research was therefore focused on selecting the best forecasting model using a prominent confectionery firm in Abeokuta, Ogun State, Nigeria as a case study. The study was based on 24-week operational period sales data collected from the company. The moving average model and the exponential smoothing model were the two forecasting models considered in this research. The data obtained was thoroughly reviewed and the results of the forecasting models were compared. The most effective model was the exponential smoothing model as it produced the lowest mean absolute percentage error on the average of 3.7347 for the cumulative days of sales under review as against the 15.1713 for the moving average model. However, the exponential smoothing model was considered the best forecasting model for minimizing forecasting error in this study.

Keywords: 

forecasting model, moving average model, exponential smoothing model, mean absolute percentage error

1. Introduction

Making decisions requires a great deal of planning, strategy, and information [1]. Small bits of information have historically impacted the various segments of the manufacturing chain. Daily planning is crucial for management to make every significant decision [2]. Planning might take the form of determining the quantity needed, the quantity to be generated, and the storage methods [3]. The most crucial step we can take to increase the efficacy and efficiency of the logistics process in many supply chains is to raise the caliber of the demand forecasts. Using a planned marketing strategy and several unpredictable and competitive elements, demand forecasting estimates sales for a certain future time [4]. How much can be sold given the circumstances, it asks? The scenario considers the state of the general economic, social, and legal concerns, as well as the characteristics of vendors, buyers, and the market. The situation also involves the company's, its rivals', and interest groups' actions. Demand forecasting knowledge has advanced in the same way that science always does by accumulating data from tests of numerous plausible hypotheses in experiments [5]. Demand is the area where forecasting is most frequently employed, even though many products are projected. The demand projection will directly affect a wide range of business operations. Hugos [6] asserts that for every supplier, producer, or retailer, predicting product demand is essential. The amounts that should be ordered, produced, and shipped will be determined by forecasts of future demand. Forecasting demand is required because it takes time for finished items to get from the suppliers' raw materials to the customers' hands in the fundamental operational process. Most businesses are unable to simply wait for demand to materialize before acting on it. Instead, they must foresee and prepare for future demand to respond quickly to consumer orders as they come in. Forecasts give people power because it implies that we can change variables right now to change the future [7]. Higher productivity is the goal for every food-based sector, especially confectionaries, in terms of lowering production costs, increasing product demand, and maintaining competitiveness by lowering the cost of their varied products [8].

Even when sufficient care and professionalism are put into the efficient creation of the products in the manufacturing of bread, cakes, and confections, a poor profitability index is nevertheless seen. Retailers and vendors base their demand for bread on the amount of stock that is currently available as well as the amount of the prior stock that was sold because bread is a perishable product made from flour with a concise shelf life that must be consumed within the first 24 hours of production. The amount of the order cannot be guaranteed since, barring exceptional circumstances, the merchants must wait until the residual stock levels fall to an average of around 9% of the starting stock before placing an accurate order. The bakers rarely produce enough goods to meet demand since they are unsure of how many to order. Most of the time, they either produce less than what is required or less than what is required, which results in one of two outcomes: either significant loss for bakers and retailers because of underproduction or excessive production leading to waste because bread must be consumed within the first 24 hours of production (depreciation of product due to staleness). Both the stores and the bakeries ultimately suffer losses because of this. The need to reduce excessive manufacturing capacity, which will also reduce daily losses and shortages, maximize sales volume and profit margin, grow the client base, maintain high standards of quality, and boost the worth of the product, is essential. As a result, before production starts, the assurance of the actual demand quantity can be made available. Bakeries use their judgment on how much bread was sold the day before to estimate the quantity to be manufactured. Reliable projections must be made to ensure that the production amount is as close as feasible to the actual demand quantity [9]. Therefore, it is necessary to use forecasting methodologies to forecast the quantity of actual demand, thereby increasing sales and decreasing wastages and losses.

Businesses that give quick delivery to their clients tend to compel their market rivals to maintain completed product inventories to offer quick order turnaround times [10]. As a result, almost all organizations involved are required to produce or at the very least order parts following an estimate of future demand. Accurate demand forecasting also gives the company the chance to reduce costs by balancing manufacturing volumes, optimizing transportation, and generally organizing effective logistical operations. In general, correct demand projections result in operations that are efficient and provide high levels of customer service, while inaccurate forecasts invariably result in operations that are inefficient, expensive, and/or provide a low standard of customer service. Numerous studies have examined the use of various forecasting models in a variety of technical and industrial applications. Liu et al. [11] used the exponential smoothing and seasonal autoregressive integrated moving average models to anticipate the trend in the prevalence of acute hemorrhagic conjunctivitis in China from 2011 to 2019. Consequently, the moving model with the lowest mean absolute percentage error (MAPE) and root mean squared error (RMSE) was chosen for in-sample modeling. Also, Rabbani et al. [12] used univariate time series analysis, such as exponential smoothing and seasonal autoregressive integrated moving average models, to develop temporal variations to forecast accidents and fatalities in Pakistan. Upon determining the lowest RMSE, mean absolute error (MAE), MAPE, and normalized Bayesian estimation technique, the results showed that the exponential model fit perfectly on accident data than the moving average model. In predicting telecommunication data, Nalawade and Pawar [13] utilized an autoregressive integrated moving average model. This model utilized auto regression, moving average, or a mix of both. Using evaluation metrics such as RMSE, sum of squared regression, MAPE, mean absolute deviation (MAD), and maximum absolute error, it is possible to determine how well the model performs. The findings demonstrated that the accuracy of forecasting using autoregressive integrated moving average models is 7.6% better than that using neural network methods. Moreover, Jere et al. [14] compared the performance of Holt Winters exponential smoothing models (HWES) and auto-regressive integrated moving average. The error indicators including MAE, mean percentage error, RMSE, mean absolute scaled error, and MAPE demonstrated that HWES is a suitable model with adequate forecast accuracy. The HWES has lower error than the autoregressive integrated moving average models. In order to anticipate how changes in temperature would affect the amount of energy produced at a Nigerian Agricultural Institute, Kazeem et al. [15] used multivariate linear regression (MLR) and artificial neural network (ANN) models. Of the two models examined in this study, the ANN model performed the best. On train data and test data, respectively, the mean squared error was reduced by 42% and 39%, showing that ANNs outperformed the MLR model. The ANN fared noticeably better than the MLR, according to additional metrics like MAE and MAPE.

Most of the application of forecasting models in literature are centered on predicting future events in health, telecommunications, energy and agriculture but very little investigators had bothered on their use in confectionery forecasting. The study, therefore, aims to establish an effective and efficient model that will forecast how much is produced each day in the selected baking and confectionery company. Additionally, it will show how this approach is used in the sales and operations of the bakery and confections sector. The remaining part of this paper, which are in three sections have the data source, the procedure for data collation and forecasting models, and the performance statistics index as sub-headings in section 2. The results and discussion is presented in section 3. The conclusions is presented in section 4 of the paper.

2. Methodology

2.1 Data source

The data used in this study were obtained from XXX Bakery and Confectionery located in Abeokuta, Southwestern, Nigeria. The company makes several varieties of confectionaries and baked items therefore, customers have a wide range of confectionaries to choose from. Confections include vanilla, chocolate, strawberry, and chicken pizza, chicken pie sausages, bread, and sponge cakes in flavors. The products come in a variety of sizes and shapes and are primarily divided into six main pricing ranges. However, there is variation in the demand for various products. The data derived from sales is transformed into a uniform size for simple data collecting, analysis, and interpretation. To select an acceptable forecasting model, the generated data will be employed. The data collected was for a period of one hundred and sixty-eight days (24 weeks). The data was collected physically and not from any National Scientific Data Sharing Platform.

2.2 Procedure

The first step in conducting this study was gathering and critically analyzing the sales and demand data for twenty-four weeks, after which appropriate alterations were made to suit the situation at hand. The next step was the application of the forecasting models that were considered when conducting this investigation. The forecasting models applied to the data include (i) The exponential smoothing model and (ii) The moving average model. Each technique used to apply these models to the sales data was closely examined for any errors, corrections, and modifications (mathematical, computational, data misevaluation, and formula or figure distortion) during the analysis. The model with the smallest divergence from the actual sales record was considered the best prediction approach for the company’s products.

2.2.1 Exponential smoothing model

The most utilized class of techniques for smoothing discrete time series to forecast the near future is exponential smoothing. The objective behind exponential smoothing is to smooth the original series in the same manner that the moving average does, then use the smoothed series to forecast future values of the variable of interest. However, in exponential smoothing, we want the more recent values of the series to have a higher influence on the forecast of future values than the more distant observations. Weighted averages are used to calculate forecasts, and as observations are gathered from further in the past, the weights decline exponentially, with the oldest observations having the smallest weights (see Eq. (1)):

$\left.\hat{y}_{T+1}\right|_T=\alpha y_T+\alpha(1-\alpha) y_{T-1}+\alpha(1-\alpha)^2 y_{T-2}+\ldots$,             (1)

where, 0≤α≤1 is the smoothing parameter. The one-step-ahead forecast for time T+1 is a weighted average of all the observations in the series y1…, yT. The rate at which the weights decrease is controlled by the parameter α. Formally, the exponential smoothing equation employed is given in Eq. (2).

$y_{T+\left.1\right|_T}=\alpha y_T+(1-\alpha) \hat{y}_{\left.T\right|_{T-1}}$             (2)

where, yT+1/T=forecast for the next period; yT=observed sales value of series in period t; α=smoothing constant; and $\hat{y}_{T / T-1}$=old forecast for period t.

2.2.2 Moving average model

The simple moving average (SMA) method is used with time-series data to smooth out short-term fluctuations and long-term trends. The simple moving average is given by Eq. (3).

$S M A_k=\frac{P_{n-k+1}+P_{n-k+2} \ldots+P_n}{k}=\frac{1}{k} \sum_{i=n-k+1}^n P_i$             (3)

When calculating the next mean SMAk, nextwith the same sampling width k the range from n=k+2 to n+1 is considered. A new value Pn+1 comes into the sum and the oldest value $P_{n-k+1}$ drops out. This simplifies the calculations by reusing the previous mean SMAk, prev shown in Eq. (4).

$S M A_{k,next }=\frac{1}{k} \sum_{i=n-k+2}^{n+1} P_i=\frac{1}{k}\left(\underbrace{P_{n-k+2}+P_{n-k+3}+\ldots . .+P_n+P_{n+1}}_{\sum_{i=n-k+2}^{n+1}\quad P_i}+\underbrace{P_{n-k+1}-P_{n-k+1}}_0 \right)$             (4)

2.3 Performance statistic index

To compare the predicting capabilities of the exponential smoothing model and the moving average model, one metric was used: the mean absolute percentage error (MAPE). The accuracy of fitting was evaluated using MAPE [16]. The lower the MAPE value, the greater the prediction ability. MAPE is expressed as a percentage. The mathematical formula is shown in Eq. (5).

$M A P E=\frac{1}{n} \sum_{t=1}^n \frac{\left\|\hat{y}_t-y_t\right\|}{y_t} \times 100 \%$             (5)

where, yt-actual sales at time t; $\hat{y}_t$-predicted sales; n-number of predictions.

3. Results and Discussion

The data were collected from the company’s daily sales and are represented as shown in Table 1. The model applications and analysis are presented in Tables 2-15, and subsequently, the forecasts with the least MAPE for each day were plotted against the actual sales values as shown in Figures 1 (a-n). The data in Table 1 is better appreciated in the graph provided in Figure 2. According to sales statistics, the company sold more goodies on the weekends and had poor sales during the middle of the week because most customers had free time on the weekends and were extremely busy during the middle of the work week. The weekly trend in sales also show a downward trend in sales. Moreover, an outside factor that influences the company's sales demand is the seasonal effect. Also, the strike action of the flour-producing companies in the country was said to have affected the supply of flour for production in their establishment and this invariably caused the fluctuation among some days in the data provided. Another cause of sales drops in some of the days was attributed to price increase of petroleum products and epileptic power supply which therefore caused price increases of the company's goods. Generally, sales are often higher on weekends than on weekdays and are at their lowest on Wednesdays. As computed in the last column of the Table 1 for the average weekly sales and the spread of daily sales across the 24 weeks shown in Table 1. Figure 1 shows that the trend in the sales data for each day of the study period was not linear, making it impossible to use linear regression [17, 18]. However, it could be deduced form this figure and as indicated in the last column of Table 1, that the sales are badly affected from the early weeks of data collection, and this trend continues till the end of the twenty-fourth week. As it was mentioned earlier, the trend in reduced sales was unconnected with hike in the price of petroleum products, which are mostly used in transportation, and production of goods. This reduced production of confections, and there was also low demand from customers arising from market inflation, which reduces the purchasing power of the customers.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Figure 1. (a-n): Comparison of forecasting models for weekly sales data

Table 1. Daily sales data for twenty-four weeks

Week

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Weekly Average

1

331200

251400

188750

227580

385500

397500

482500

323490

2

256600

245200

156400

214600

375400

302500

405000

279386

3

305450

224500

156400

224500

360000

325500

385000

283050

4

287500

256000

195000

205000

308000

320000

356000

275357

5

297500

295400

231000

196000

312500

345000

355000

290343

6

302500

287500

158000

213500

333500

389000

402500

298071

7

259500

245600

102300

187000

365000

352000

397000

272629

8

287000

302000

145600

198400

297500

302000

312500

263571

9

297000

187500

90540

121500

312500

264880

298740

224666

10

282500

210330

102300

213000

301230

298700

315000

246151

11

294000

198750

112300

198800

302540

325400

302500

247756

12

245660

189700

132500

223000

298700

265000

278900

233351

13

265000

123000

187900

206500

356400

345600

298700

254729

14

287000

175640

154600

198700

335640

312540

325600

255674

15

185000

187900

177000

214500

397000

345600

287000

256286

16

290500

245600

156400

194500

198700

196540

178900

208734

17

320200

231200

213000

245100

225780

325460

298970

265673

18

251000

245800

198000

214500

235460

298750

312000

250787

19

245000

214000

187000

231450

348790

387500

312540

275183

20

265400

165400

145600

224500

332540

356470

314500

257773

21

212000

132540

103200

204500

398700

346500

321500

245563

22

174500

123000

154600

198400

302500

312500

320540

226577

23

147800

198700

135600

197800

287500

365400

287950

231536

24

186500

165020

112300

245600

302540

302540

298750

230464

Table 2. Analysis of Monday data using exponential smoothing method

Exponential Smoothing for Monday

MAPE

Week

Monday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

331200

 

 

 

 

 

 

 

 

2

256600

331200

331200

331200

331200

29.07248636

29.07248636

29.07248636

29.07248636

3

305450

266370

276140

285910

295680

12.79423801

9.595678507

6.397119005

3.198559502

4

287500

301860

298270

294680

291090

4.994782609

3.746086957

2.497391304

1.248695652

5

297500

289500

291500

293500

295500

2.68907563

2.016806723

1.344537815

0.672268908

6

302500

298500

299500

300500

301500

1.32231405

0.991735537

0.661157025

0.330578512

7

259500

293900

285300

276700

268100

13.25626204

9.942196532

6.628131021

3.314065511

8

287000

265000

270500

276000

281500

7.665505226

5.74912892

3.832752613

1.916376307

9

297000

289000

291000

293000

295000

2.693602694

2.02020202

1.346801347

0.673400673

10

282500

294100

291200

288300

285400

4.10619469

3.079646018

2.053097345

1.026548673

11

294000

284800

287100

289400

291700

3.129251701

2.346938776

1.56462585

0.782312925

12

245660

284332

274664

264996

255328

15.74208255

11.80656191

7.871041277

3.935520638

13

265000

249528

253396

257264

261132

5.838490566

4.378867925

2.919245283

1.459622642

14

287000

269400

273800

278200

282600

6.132404181

4.599303136

3.066202091

1.533101045

15

185000

266600

246200

225800

205400

44.10810811

33.08108108

22.05405405

11.02702703

16

290500

206100

227200

248300

269400

29.05335628

21.79001721

14.52667814

7.263339071

17

320200

296440

302380

308320

314260

7.420362274

5.565271705

3.710181137

1.855090568

18

251000

306360

292520

278680

264840

22.05577689

16.54183267

11.02788845

5.513944223

19

245000

249800

248600

247400

246200

1.959183673

1.469387755

0.979591837

0.489795918

20

265400

249080

253160

257240

261320

6.149208742

4.611906556

3.074604371

1.537302185

21

212000

254720

244040

233360

222680

20.1509434

15.11320755

10.0754717

5.037735849

22

174500

204500

197000

189500

182000

17.19197708

12.89398281

8.595988539

4.297994269

23

147800

169160

163820

158480

153140

14.45196211

10.83897158

7.225981055

3.612990528

24

186500

155540

163280

171020

178760

16.60053619

12.45040214

8.300268097

4.150134048

 

 

 

 

 

Sum

288.5781051

223.7017004

158.8252957

93.94889104

 

 

 

 

 

Mean

12.54687413

9.726160886

6.90544764

4.084734393

Table 3. Analysis of Tuesday data using exponential smoothing method

Exponential Smoothing for Tuesday

MAPE

Week

Tuesday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

251400

 

 

 

 

 

 

 

 

2

245200

251400

251400

251400

251400

2.528548124

2.528548124

2.528548124

2.528548124

3

224500

241060

236920

232780

228640

7.376391982

5.532293987

3.688195991

1.844097996

4

256000

230800

237100

243400

249700

9.84375

7.3828125

4.921875

2.4609375

5

295400

263880

271760

279640

287520

10.67027759

8.002708192

5.335138795

2.667569397

6

287500

293820

292240

290660

289080

2.19826087

1.648695652

1.099130435

0.549565217

7

245600

279120

270740

262360

253980

13.64820847

10.23615635

6.824104235

3.412052117

8

302000

256880

268160

279440

290720

14.94039735

11.20529801

7.470198675

3.735099338

9

187500

279100

256200

233300

210400

48.85333333

36.64

24.42666667

12.21333333

10

210330

192066

196632

201198

205764

8.683497361

6.512623021

4.341748681

2.17087434

11

198750

208014

205698

203382

201066

4.661132075

3.495849057

2.330566038

1.165283019

12

189700

196940

195130

193320

191510

3.816552451

2.862414338

1.908276226

0.954138113

13

123000

176360

163020

149680

136340

43.38211382

32.53658537

21.69105691

10.84552846

14

175640

133528

144056

154584

165112

23.97631519

17.98223639

11.9881576

5.994078798

15

187900

178092

180544

182996

185448

5.219797765

3.914848324

2.609898882

1.304949441

16

245600

199440

210980

222520

234060

18.79478827

14.09609121

9.397394137

4.698697068

17

231200

242720

239840

236960

234080

4.982698962

3.737024221

2.491349481

1.24567474

18

245800

234120

237040

239960

242880

4.751830757

3.563873068

2.375915378

1.187957689

19

214000

239440

233080

226720

220360

11.88785047

8.91588785

5.943925234

2.971962617

20

165400

204280

194560

184840

175120

23.50665054

17.62998791

11.75332527

5.876662636

21

132540

158828

152256

145684

139112

19.83401237

14.87550928

9.917006187

4.958503093

22

123000

130632

128724

126816

124908

6.204878049

4.653658537

3.102439024

1.551219512

23

198700

138140

153280

168420

183560

30.4781077

22.85858078

15.23905385

7.619526925

24

165020

191964

185228

178492

171756

16.32771785

12.24578839

8.163858926

4.081929463

 

 

 

 

 

Sum

336.5671114

253.0574706

169.5478297

86.03818893

 

 

 

 

 

Mean

14.63335267

11.00249872

7.371644771

3.740790823

Table 4. Analysis of Wednesday data using exponential smoothing method

Exponential Smoothing for Wednesday

MAPE

Week

Wednesday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

188750

 

 

 

 

 

 

 

 

2

154220

188750

188750

188750

188750

22.3900921

22.3900921

22.3900921

22.39009208

3

156400

154656

155092

155528

155964

1.11508951

0.83631714

0.55754476

0.278772379

4

195000

164120

171840

179560

187280

15.8358974

11.8769231

7.91794872

3.958974359

5

231000

202200

209400

216600

223800

12.4675325

9.35064935

6.23376623

3.116883117

6

158000

216400

201800

187200

172600

36.9620253

27.721519

18.4810127

9.240506329

7

102300

146860

135720

124580

113440

43.5581623

32.6686217

21.7790811

10.88954057

8

145600

110960

119620

128280

136940

23.7912088

17.8434066

11.8956044

5.947802198

9

90540

134588

123576

112564

101552

48.6503203

36.4877402

24.3251602

12.16258008

10

102300

92892

95244

97596

99948

9.19648094

6.8973607

4.59824047

2.299120235

11

112300

104300

106300

108300

110300

7.1237756

5.3428317

3.5618878

1.7809439

12

132500

116340

120380

124420

128460

12.1962264

9.14716981

6.09811321

3.049056604

13

187900

143580

154660

165740

176820

23.5870144

17.6902608

11.7935072

5.896753592

14

154600

181240

174580

167920

161260

17.2315653

12.923674

8.61578266

4.307891332

15

177000

159080

163560

168040

172520

10.1242938

7.59322034

5.06214689

2.531073446

16

156400

172880

168760

164640

160520

10.5370844

7.9028133

5.2685422

2.6342711

17

213000

167720

179040

190360

201680

21.258216

15.943662

10.629108

5.314553991

18

198000

210000

207000

204000

201000

6.06060606

4.54545455

3.03030303

1.515151515

19

187000

195800

193600

191400

189200

4.70588235

3.52941176

2.35294118

1.176470588

20

145600

178720

170440

162160

153880

22.7472527

17.0604396

11.3736264

5.686813187

21

103200

137120

128640

120160

111680

32.8682171

24.6511628

16.4341085

8.217054264

22

154600

113480

123760

134040

144320

26.5976714

19.9482536

13.2988357

6.649417853

23

135600

150800

147000

143200

139400

11.2094395

8.40707965

5.60471976

2.802359882

24

112300

130940

126280

121620

116960

16.5983972

12.4487979

8.29919858

4.149599288

 

 

 

 

 

Sum

436.812451

333.206861

229.601272

125.9956819

 

 

 

 

 

Mean

18.9918457

14.4872548

9.98266399

5.478073125

Table 5. Analysis of Thursday data using exponential smoothing method

Exponential Smoothing for Thursday

MAPE

Week

Thursday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

227580

 

 

 

 

 

 

 

 

2

214600

227580

227580

227580

227580

6.048462

6.048462

6.048462

6.048462

3

224500

216580

218560

220540

222520

3.52784

2.64588

1.76392

0.88196

4

205000

220600

216700

212800

208900

7.609756

5.707317

3.804878

1.902439

5

196000

203200

201400

199600

197800

3.673469

2.755102

1.836735

0.918367

6

213500

199500

203000

206500

210000

6.557377

4.918033

3.278689

1.639344

7

187000

208200

202900

197600

192300

11.3369

8.502674

5.668449

2.834225

8

198400

189280

191560

193840

196120

4.596774

3.447581

2.298387

1.149194

9

121500

183020

167640

152260

136880

50.63374

37.97531

25.31687

12.65844

10

213000

139800

158100

176400

194700

34.3662

25.77465

17.1831

8.591549

11

198800

210160

207320

204480

201640

5.714286

4.285714

2.857143

1.428571

12

223000

203640

208480

213320

218160

8.681614

6.511211

4.340807

2.170404

13

206500

219700

216400

213100

209800

6.392252

4.794189

3.196126

1.598063

14

198700

204940

203380

201820

200260

3.140413

2.35531

1.570206

0.785103

15

214500

201860

205020

208180

211340

5.892774

4.41958

2.946387

1.473193

16

194500

210500

206500

202500

198500

8.226221

6.169666

4.113111

2.056555

17

245100

204620

214740

224860

234980

16.51571

12.38678

8.257854

4.128927

18

214500

238980

232860

226740

220620

11.41259

8.559441

5.706294

2.853147

19

231450

217890

221280

224670

228060

5.858717

4.394038

2.929358

1.464679

20

224500

230060

228670

227280

225890

2.476615

1.857461

1.238307

0.619154

21

204500

220500

216500

212500

208500

7.823961

5.867971

3.91198

1.95599

22

198400

203280

202060

200840

199620

2.459677

1.844758

1.229839

0.614919

23

197800

198280

198160

198040

197920

0.242669

0.182002

0.121335

0.060667

24

245600

207360

216920

226480

236040

15.57003

11.67752

7.785016

3.892508

 

 

 

 

 

Sum

228.758

173.0806

117.4033

61.72586

 

 

 

 

 

Mean

9.946002

7.525246

5.104489

2.683733

Table 6. Analysis of Friday data using exponential smoothing method

Exponential Smoothing for Friday

MAPE

Week

Friday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

385500

 

 

 

 

 

 

 

 

2

375400

385500

385500

385500

385500

2.690464

2.690463506

2.690463506

2.690463506

3

360000

372320

369240

366160

363080

3.422222

2.566666667

1.711111111

0.855555556

4

308000

349600

339200

328800

318400

13.50649

10.12987013

6.753246753

3.376623377

5

312500

308900

309800

310700

311600

1.152

0.864

0.576

0.288

6

333500

316700

320900

325100

329300

5.037481

3.778110945

2.51874063

1.259370315

7

365000

339800

346100

352400

358700

6.90411

5.178082192

3.452054795

1.726027397

8

297500

351500

338000

324500

311000

18.15126

13.61344538

9.075630252

4.537815126

9

312500

300500

303500

306500

309500

3.84

2.88

1.92

0.96

10

301230

310246

307992

305738

303484

2.993062

2.244796335

1.49653089

0.748265445

11

302540

301492

301754

302016

302278

0.3464

0.259800357

0.173200238

0.086600119

12

298700

301772

301004

300236

299468

1.028457

0.771342484

0.514228323

0.257114161

13

356400

310240

321780

333320

344860

12.95174

9.713804714

6.475869809

3.237934905

14

335640

352248

348096

343944

339792

4.948159

3.711119056

2.474079371

1.237039685

15

397000

347912

360184

372456

384728

12.36474

9.273551637

6.182367758

3.091183879

16

198700

357340

317680

278020

238360

79.83895

59.8792149

39.9194766

19.9597383

17

225780

204116

209532

214948

220364

9.595181

7.196385862

4.797590575

2.398795287

18

235460

227716

229652

231588

233524

3.288881

2.466661004

1.644440669

0.822220335

19

348790

258126

280792

303458

326124

25.99386

19.49539838

12.99693225

6.498466126

20

332540

345540

342290

339040

335790

3.909304

2.931978108

1.954652072

0.977326036

21

398700

345772

359004

372236

385468

13.27514

9.956358164

6.637572109

3.318786055

22

302500

379460

360220

340980

321740

25.44132

19.08099174

12.72066116

6.360330579

23

287500

299500

296500

293500

290500

4.173913

3.130434783

2.086956522

1.043478261

24

302540

290508

293516

291450

299121

5.122391

2.653425321

3.348750922

1.114736028

 

 

 

 

 

Sum

254.8531

191.8124763

128.7718054

65.73113445

 

 

 

 

 

Mean

11.08057

8.339672884

5.598774147

2.857875411

Table 7. Analysis of Saturday data using exponential smoothing method

Exponential Smoothing for Saturday

MAPE

Week

Saturday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

397500

 

 

 

 

 

 

 

 

2

302500

397500

397500

397500

397500

31.40496

31.40495868

31.40495868

31.40495868

3

325500

307100

311700

316300

320900

5.652842

4.239631336

2.826420891

1.413210445

4

320000

324400

323300

322200

321100

1.375

1.03125

0.6875

0.34375

5

345000

325000

330000

335000

340000

5.797101

4.347826087

2.898550725

1.449275362

6

389000

353800

362600

371400

380200

9.048843

6.786632391

4.524421594

2.262210797

7

352000

381600

374200

366800

359400

8.409091

6.306818182

4.204545455

2.102272727

8

302000

342000

332000

322000

312000

13.24503

9.933774834

6.622516556

3.311258278

9

264880

294576

287152

279728

272304

11.21111

8.40833585

5.605557233

2.802778617

10

298700

271644

278408

285172

291936

9.057918

6.793438232

4.528958822

2.264479411

11

325400

304040

309380

314720

320060

6.564229

4.923171481

3.282114321

1.64105716

12

265000

313320

301240

289160

277080

18.23396

13.6754717

9.116981132

4.558490566

13

345600

281120

297240

313360

329480

18.65741

13.99305556

9.328703704

4.664351852

14

312540

338988

332376

325764

319152

8.462277

6.346707621

4.231138414

2.115569207

15

345600

319152

325764

332376

338988

7.652778

5.739583333

3.826388889

1.913194444

16

196540

315788

285976

256164

226352

60.67365

45.50524066

30.33682711

15.16841355

17

325460

222324

248108

273892

299676

31.6893

23.76697597

15.84465065

7.922325324

18

298750

320118

314776

309434

304092

7.152469

5.364351464

3.57623431

1.788117155

19

387500

316500

334250

352000

369750

18.32258

13.74193548

9.161290323

4.580645161

20

356470

381294

375088

368882

362676

6.96384

5.222879906

3.481919937

1.740959969

21

346500

354476

352482

350488

348494

2.301876

1.726406926

1.150937951

0.575468975

22

312500

339700

332900

326100

319300

8.704

6.528

4.352

2.176

23

365400

323080

333660

344240

354820

11.58183

8.6863711

5.790914067

2.895457033

24

302540

352828

340256

327684

315112

16.62193

12.46645072

8.310967145

4.155483572

 

 

 

 

 

Sum

318.784

246.9392675

175.0944979

103.2497283

 

 

 

 

 

Mean

13.86018

10.73648989

7.612804257

4.489118621

Table 8. Analysis of Sunday data using exponential smoothing method

Exponential Smoothing for Sunday

MAPE

Week

Sunday

α= 0.2

α= 0.4

α= 0.6

α= 0.8

0.2

0.4

0.6

0.8

1

482500

 

 

 

 

 

 

 

 

2

405000

482500

482500

482500

482500

19.1358

19.13580247

19.13580247

19.13580247

3

385000

401000

397000

393000

389000

4.155844

3.116883117

2.077922078

1.038961039

4

356000

379200

373400

367600

361800

6.516854

4.887640449

3.258426966

1.629213483

5

355000

355800

355600

355400

355200

0.225352

0.169014085

0.112676056

0.056338028

6

402500

364500

374000

383500

393000

9.440994

7.080745342

4.720496894

2.360248447

7

397000

401400

400300

399200

398100

1.108312

0.831234257

0.554156171

0.277078086

8

312500

380100

363200

346300

329400

21.632

16.224

10.816

5.408

9

298740

309748

306996

304244

301492

3.68481

2.76360715

1.842404767

0.921202383

10

315000

301992

305244

308496

311748

4.129524

3.097142857

2.064761905

1.032380952

11

302500

312500

310000

307500

305000

3.305785

2.479338843

1.652892562

0.826446281

12

278900

297780

293060

288340

283620

6.769451

5.077088562

3.384725708

1.692362854

13

298700

282860

286820

290780

294740

5.30298

3.977234684

2.651489789

1.325744895

14

325600

304080

309460

314840

320220

6.609337

4.957002457

3.304668305

1.652334152

15

287000

317880

310160

302440

294720

10.75958

8.069686411

5.379790941

2.68989547

16

178900

265380

243760

222140

200520

48.33985

36.254891

24.16992733

12.08496367

17

298970

202914

226928

250942

274956

32.12898

24.09673211

16.06448808

8.032244038

18

312000

301576

304182

306788

309394

3.341026

2.505769231

1.670512821

0.83525641

19

312540

312108

312216

312324

312432

0.138222

0.103666731

0.069111154

0.034555577

20

314500

312932

313324

313716

314108

0.498569

0.373926868

0.249284579

0.124642289

21

321500

315900

317300

318700

320100

1.741835

1.306376361

0.870917574

0.435458787

22

320540

321308

321116

320924

320732

0.239596

0.179696762

0.119797841

0.059898921

23

287950

314022

307504

300986

294468

9.05435

6.790762285

4.527174857

2.263587428

24

298750

290110

292270

294430

296590

2.89205

2.169037657

1.446025105

0.723012552

 

 

 

 

 

Sum

201.1511

155.6472797

110.143454

64.63962821

 

 

 

 

 

Mean

8.7457

6.76727303

4.788845824

2.810418618

Table 9. Moving average analysis for Monday

Week

Monday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

331200

 

 

 

 

 

 

 

 

2

256600

 

 

 

 

 

 

 

 

3

305450

293900

3.781306

 

 

 

 

 

 

4

287500

281025

2.252174

297750

3.565217

 

 

 

 

5

297500

296475

0.344538

283183.3

4.812325

295187.5

0.777311

 

 

6

302500

292500

3.305785

296816.7

1.878788

286762.5

5.202479

295650

2.264463

7

259500

300000

15.60694

295833.3

14.00128

298237.5

14.92775

289910

11.71869

8

287000

281000

2.090592

286500

0.174216

286750

0.087108

290490

1.216028

9

297000

273250

7.996633

283000

4.713805

286625

3.493266

286800

3.434343

10

282500

292000

3.362832

281166.7

0.471976

286500

1.415929

288700

2.19469

11

294000

289750

1.445578

288833.3

1.75737

281500

4.251701

285700

2.823129

12

245660

288250

17.33697

291166.7

18.52425

290125

18.10022

284000

15.60694

13

265000

269830

1.822642

274053.3

3.416352

279790

5.581132

281232

6.125283

14

287000

255330

11.03484

268220

6.543554

271790

5.299652

276832

3.542857

15

185000

276000

49.18919

265886.7

43.72252

272915

47.52162

274832

48.55784

16

290500

236000

18.76076

245666.7

15.43316

245665

15.43373

255332

12.10602

17

320200

237750

25.74953

254166.7

20.62253

256875

19.7767

254632

20.4772

18

251000

305350

21.65339

265233.3

5.670651

270675

7.838645

269540

7.386454

19

245000

285600

16.57143

287233.3

17.2381

261675

6.806122

266740

8.873469

20

265400

248000

6.556142

272066.7

2.511932

276675

4.248304

258340

2.660136

21

212000

255200

20.37736

253800

19.71698

270400

27.54717

274420

29.4434

22

174500

238700

36.79083

240800

37.99427

243350

39.45559

258720

48.26361

23

147800

193250

30.75101

217300

47.023

224225

51.70839

229580

55.33153

24

186500

161150

13.59249

178100

4.504021

199925

7.198391

208940

12.03217

 

 

Sum

310.373

 

274.2963

 

286.6712

 

294.0583

 

 

Mean

14.10786

 

13.06173

 

14.33356

 

15.47675

Table 10. Moving average analysis for Tuesday

Week

Tuesday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

251400

 

 

 

 

 

 

 

 

2

245200

 

 

 

 

 

 

 

 

3

224500

248300

10.60134

 

 

 

 

 

 

4

256000

234850

8.261719

240366.7

6.106771

 

 

 

 

5

295400

240250

18.6696

241900

18.11104

244275

17.30704

 

 

6

287500

275700

4.104348

258633.3

10.04058

255275

11.2087

254500

11.47826

7

245600

291450

18.66857

279633.3

13.85722

265850

8.245114

261720

6.563518

8

302000

266550

11.73841

276166.7

8.554084

271125

10.22351

261800

13.31126

9

187500

273800

46.02667

278366.7

48.46222

282625

50.73333

277300

47.89333

10

210330

244750

16.36476

245033.3

16.49947

255650

21.54709

263600

25.32687

11

198750

198915

0.083019

233276.7

17.37191

236357.5

18.92201

246586

24.06843

12

189700

204540

7.822878

198860

4.828677

224645

18.42119

228836

20.63047

13

123000

194225

57.9065

199593.3

62.271

196570

59.81301

217656

76.9561

14

175640

156350

10.98269

170483.3

2.93593

180445

2.735709

181856

3.539057

15

187900

149320

20.5322

162780

13.36881

171772.5

8.583023

179484

4.478978

16

245600

181770

25.98941

162180

33.9658

169060

31.1645

174998

28.74674

17

231200

216750

6.25

203046.7

12.17705

183035

20.83261

184368

20.25606

18

245800

238400

3.010578

221566.7

9.858964

210085

14.53011

192668

21.61595

19

214000

238500

11.4486

240866.7

12.55452

227625

6.366822

217228

1.508411

20

165400

229900

38.99637

230333.3

39.25836

234150

41.5659

224900

35.9734

21

132540

189700

43.1266

208400

57.23555

214100

61.53614

220400

66.28942

22

123000

148970

21.11382

170646.7

38.73713

189435

54.0122

197788

60.80325

23

198700

127770

35.69703

140313.3

29.38433

158735

20.11324

176148

11.34977

24

165020

160850

2.526966

151413.3

8.245465

154910

6.12653

166728

1.035026

 

 

Sum

419.9221

 

463.8249

 

483.9878

 

481.8243

 

 

Mean

19.08737

 

22.0869

 

24.19939

 

25.35917

Table 11. Moving average analysis for Wednesday

Week

Wednesday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

188750

 

 

 

 

 

 

 

 

2

156400

 

 

 

 

 

 

 

 

3

156400

172575

10.34207

 

 

 

 

 

 

4

195000

156400

19.79487

167183.3

14.26496

 

 

 

 

5

231000

175700

23.93939

169266.7

26.72439

174137.5

24.6158

 

 

6

158000

213000

34.81013

194133.3

22.8692

184700

16.89873

185510

17.41139

7

102300

194500

90.12708

194666.7

90.29

185100

80.93842

179360

75.32747

8

145600

130150

10.61126

163766.7

12.47711

171575

17.83997

168540

15.75549

9

90540

123950

36.90082

135300

49.43671

159225

75.8615

166380

83.76408

10

102300

118070

15.41544

112813.3

10.27696

124110

21.31965

145488

42.21701

11

112300

96420

14.14069

112813.3

0.457109

110185

1.883348

119748

6.632235

12

132500

107300

19.01887

101713.3

23.23522

112685

14.95472

110608

16.52226

13

187900

122400

34.85897

115700

38.42469

109410

41.77222

116648

37.92017

14

154600

160200

3.622251

144233.3

6.705476

133750

13.48642

125108

19.07633

15

177000

171250

3.248588

158333.3

10.54614

146825

17.04802

137920

22.0791

16

156400

165800

6.01023

173166.7

10.72038

163000

4.219949

152860

2.263427

17

213000

166700

21.73709

162666.7

23.63067

168975

20.66901

161680

24.0939

18

198000

184700

6.717172

182133.3

8.013468

175250

11.4899

177780

10.21212

19

187000

205500

9.893048

189133.3

1.14082

186100

0.481283

179800

3.850267

20

145600

192500

32.21154

199333.3

36.90476

188600

29.53297

186280

27.93956

21

103200

166300

61.14341

176866.7

71.38243

185900

80.13566

180000

74.4186

22

154600

124400

19.53428

145266.7

6.037085

158450

2.490298

169360

9.547219

23

135600

128900

4.941003

134466.7

0.835792

147600

8.849558

157680

16.28319

24

112300

145100

29.20748

131133.3

16.77056

134750

19.9911

145200

29.29653

 

 

Sum

508.2257

 

481.1439

 

504.4785

 

534.6103

 

 

Mean

23.10117

 

22.91162

 

25.22393

 

28.13739

Table 12. Moving average analysis for Thursday

Week

Thursday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

227580

 

 

 

 

 

 

 

 

2

214600

 

 

 

 

 

 

 

 

3

224500

221090

1.518931

 

 

 

 

 

 

4

205000

219550

7.097561

222226.7

8.403252

 

 

 

 

5

196000

214750

9.566327

214700

9.540816

217920

11.18367

 

 

6

213500

200500

6.088993

208500

2.34192

210025

1.627635

213536

0.016862

7

187000

204750

9.491979

204833.3

9.536542

209750

12.16578

210720

12.68449

8

198400

200250

0.93246

198833.3

0.218414

200375

0.995464

205200

3.427419

9

121500

192700

58.60082

199633.3

64.30727

198725

63.55967

199980

64.59259

10

213000

159950

24.9061

168966.7

20.67293

180100

15.44601

183280

13.95305

11

198800

167250

15.87022

177633.3

10.64722

179975

9.469316

186680

6.096579

12

223000

205900

7.668161

177766.7

20.28401

182925

17.97085

183740

17.60538

13

206500

210900

2.130751

211600

2.469734

189075

8.438257

190940

7.535109

14

198700

214750

8.077504

209433.3

5.401778

210325

5.850528

192560

3.090086

15

214500

202600

5.547786

209400

2.377622

206750

3.613054

208000

3.030303

16

194500

206600

6.22108

206566.7

6.203942

210675

8.316195

208300

7.095116

17

245100

204500

16.56467

202566.7

17.35346

203550

16.95226

207440

15.36516

18

214500

219800

2.470862

218033.3

1.647242

213200

0.606061

211860

1.230769

19

231450

229800

0.712897

218033.3

5.796788

217150

6.17844

213460

7.772737

20

224500

222975

0.679287

230350

2.605791

221387.5

1.386414

220010

2

21

204500

227975

11.47922

223483.3

9.282804

228887.5

11.92543

222010

8.562347

22

198400

214500

8.114919

220150

10.9627

218737.5

10.25076

224010

12.90827

23

197800

201450

1.845298

209133.3

5.729693

214712.5

8.550303

214670

8.528817

24

245600

198100

19.34039

200233.3

18.47177

206300

16.00163

211330

13.95358

 

 

Sum

224.9262

 

234.2557

 

230.4877

 

209.4487

 

 

Mean

10.22392

 

11.15503

 

11.52439

 

11.02361

Table 13. Moving average analysis for Friday

Week

Friday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

385500

 

 

 

 

 

 

 

 

2

375400

 

 

 

 

 

 

 

 

3

360000

380450

5.680556

 

 

 

 

 

 

4

308000

367700

19.38312

373633.3

21.30952

 

 

 

 

5

312500

334000

6.88

347800

11.296

357225

14.312

 

 

6

333500

310250

6.971514

326833.3

1.999

338975

1.641679

348280

4.431784

7

365000

323000

11.50685

318000

12.87671

328500

10

337880

7.430137

8

297500

349250

17.39496

337000

13.27731

329750

10.84034

335800

12.87395

9

312500

331250

6

332000

6.24

327125

4.68

323300

3.456

10

301230

305000

1.251535

325000

7.89098

327125

8.596421

324200

7.625403

11

302540

306865

1.429563

303743.3

0.397744

319057.5

5.459609

321946

6.414358

12

298700

301885

1.066287

305423.3

2.250865

303442.5

1.587713

315754

5.709407

13

356400

300620

15.65095

300823.3

15.5939

303742.5

14.77483

302494

15.12514

14

335640

327550

2.410321

319213.3

4.894133

314717.5

6.233613

314274

6.365749

15

397000

346020

12.84131

330246.7

16.81444

323320

18.55919

318902

19.67204

16

198700

366320

84.35833

363013.3

82.69418

346935

74.60242

338056

70.13387

17

225780

297850

31.92045

310446.7

37.49963

321935

42.58792

317288

40.52972

18

235460

212240

9.861548

273826.7

16.29435

289280

22.85739

302704

28.55857

19

348790

230620

33.87999

219980

36.93053

264235

24.24238

278516

20.14794

20

332540

292125

12.15343

270010

18.80375

252182.5

24.16476

281146

15.45498

21

398700

340665

14.55606

305596.7

23.35173

285642.5

28.35653

268254

32.71783

22

302500

365620

20.86612

360010

19.01157

328872.5

8.718182

308254

1.902149

23

287500

350600

21.94783

344580

19.85391

345632.5

20.22

323598

12.55583

24

302540

295000

2.492232

329566.7

8.933254

330310

9.178952

334006

10.40061

 

 

Sum

340.5029

 

378.2135

 

351.6139

 

321.5055

 

 

Mean

15.47741

 

18.01017

 

17.5807

 

16.92134

Table 14. Moving average analysis for Saturday

Week

Saturday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

397500

 

 

 

 

 

 

 

 

2

302500

 

 

 

 

 

 

 

 

3

325500

350000

7.526882

 

 

 

 

 

 

4

320000

314000

1.875

341833.3

6.822917

 

 

 

 

5

345000

322750

6.449275

316000

8.405797

336375

2.5

 

 

6

389000

332500

14.52442

330166.7

15.12425

323250

16.90231

338100

13.08483

7

352000

367000

4.261364

351333.3

0.189394

344875

2.024148

336400

4.431818

8

302000

370500

22.68212

362000

19.86755

351500

16.39073

346300

14.66887

9

264880

327000

23.45213

347666.7

31.2544

347000

31.00272

341600

28.96406

10

298700

283440

5.108805

306293.3

2.542127

326970

9.464345

330576

10.67158

11

325400

281790

13.40197

288526.7

11.33169

304395

6.455132

321316

1.255071

12

265000

312050

17.75472

296326.7

11.82138

297745

12.3566

308596

16.45132

13

345600

295200

14.58333

296366.7

14.24576

288495

16.52344

291196

15.7419

14

312540

305300

2.316503

312000

0.172778

308675

1.236642

299916

4.039163

15

345600

329070

4.782986

307713.3

10.96258

312135

9.68316

309448

10.46065

16

196540

329070

67.43157

334580

70.23507

317185

61.38445

318828

62.22041

17

325460

271070

16.71173

284893.3

12.46441

300070

7.801266

293056

9.956369

18

298750

261000

12.63598

289200

3.196653

295035

1.243515

305148

2.14159

19

387500

312105

19.45677

273583.3

29.39785

291587.5

24.75161

295778

23.67019

20

356470

343125

3.743653

337236.7

5.395498

302062.5

15.26286

310770

12.82015

21

346500

371985

7.354978

347573.3

0.309764

342045

1.285714

312944

9.684271

22

312500

351485

12.4752

363490

16.3168

347305

11.1376

342936

9.73952

23

365400

329500

9.824849

338490

7.364532

350742.5

4.011357

340344

6.857143

24

302540

338950

12.03477

341466.7

12.86662

345217.5

14.1064

353674

16.90157

 

 

Sum

300.389

 

290.2878

 

265.524

 

273.7605

 

 

Mean

13.65405

 

13.82323

 

13.2762

 

14.40845

Table 15. Moving average analysis for Sunday

Week

Sunday

2 week

MAPE

3 week

MAPE

4 week

MAPE

5 week

MAPE

1

482500

 

 

 

 

 

 

 

 

2

405000

 

 

 

 

 

 

 

 

3

385000

443750

15.25974

 

 

 

 

 

 

4

356000

395000

10.95506

424166.7

19.14794

 

 

 

 

5

355000

370500

4.366197

382000

7.605634

407125

14.6831

 

 

6

402500

355500

11.67702

365333.3

9.233954

375250

6.770186

396700

1.440994

7

397000

378750

4.596977

371166.7

6.507137

374625

5.63602

380700

4.105793

8

312500

399750

27.92

384833.3

23.14667

377625

20.84

379100

21.312

9

298740

354750

18.74874

370666.7

24.07668

366750

22.76562

364600

22.04593

10

315000

305620

2.977778

336080

6.692063

352685

11.96349

353148

12.11048

11

302500

306870

1.444628

308746.7

2.065014

330810

9.358678

345148

14.09851

12

278900

308750

10.70276

305413.3

9.506394

307185

10.14163

325148

16.58229

13

298700

290700

2.678273

298800

0.033478

298785

0.028457

301528

0.946769

14

325600

288800

11.30221

293366.7

9.899672

298775

8.238636

298768

8.240786

15

287000

312150

8.763066

301066.7

4.901278

301425

5.026132

304140

5.972125

16

178900

306300

71.21297

303766.7

69.79691

297550

66.32197

298540

66.87535

17

298970

232950

22.08248

263833.3

11.75257

272550

8.837007

273820

8.412215

18

312000

238935

23.41827

254956.7

18.28312

272617.5

12.6226

277834

10.95064

19

312540

305485

2.257311

263290

15.75798

269217.5

13.86143

280494

10.25341

20

314500

312270

0.709062

307836.7

2.118707

275602.5

12.36804

277882

11.64324

21

321500

313520

2.482115

313013.3

2.63971

309502.5

3.731726

283382

11.8563

22

320540

318000

0.792413

316180

1.360205

315135

1.686217

311902

2.694827

23

287950

321020

11.48463

318846.7

10.72987

317270

10.18232

316216

9.816288

24

298750

304245

1.839331

309996.7

3.764575

311122.5

4.141423

311406

4.236318

 

 

Sum

267.671

 

259.0196

 

249.2047

 

243.5943

 

 

Mean

12.16687

 

12.33426

 

12.46023

 

12.82075

Figure 2. Bakery and confectionery sales data for 24 weeks

Using the combined data, models were created, compared, and the model with the lowest error would be picked for each day. Moving averages of two, three, four, and five weeks would be used, along with exponential smoothing (with = 0.2, 0.4, 0.6, and 0.8). For each day of the week, the best option in each model was determined.

The mean absolute percentage error obtained from using the two forecasting models are provided in Table 16 and a better comparison is shown in Figure 3. The model with the minimum performance criteria was picked as the most optimal forecasting technique as supported in the research [17, 18] for analyzing sales data. The mean values of MAPE for all the days cumulative together are found to be 3.7347 and 15.1713 for the exponential smoothing and moving average, respectively.

Table 16. MAPE comparison for the forecasting models

Day of the week of production

Exponential smoothing model (MAPE)

Moving average model (MAPE)

Monday

4.0847 (α=0.8)

13.06173 (M=3)

Tuesday

3.7407 (α=0.8)

19.08737 (M =2)

Wednesday

5.4780 (α=0.8)

22.9110 (M =3)

Thursday

2.6830 (α=0.8)

10.2200 (M =2)

Friday

2.8570 (α=0.8)

15.4770 (M =2)

Saturday

4.4890 (α=0.8)

13.2762 (M =4)

Sunday

2.8104 (α=0.8)

12.1660 (M =2)

Figure 3. Comparison of mean absolute percentage error for forecasting models

4. Conclusion

This study has shown the value of forecasting in strategic planning as well as the way forecasting models can boost the productivity of bakeries and confectionery businesses. The goal of the case study was to emphasize the significance of selecting the most appropriate and effective forecasting models for the company's goods and services. The generated data information from the selected models was subsequently integrated into active decision-making strategy processes to make the best possible use of the limited resources available to the company. To reduce production costs, increase product demand, and maintain competitiveness by lowering the cost of their varied goods, higher productivity is the target for all food-based industries, notably confectionaries. Without using accurate and dependable facts and figures, which can only be achieved by applying forecasting models to the available data, no manager can make accurate strategy decisions. For the study of the data that could be obtained from the company for this project, primarily two forecasting models were considered. Based on the information available, forecasting models were contrasted. The best forecasting model for the day was the one with the highest performance rating, or the one with the lowest MAPE (i.e., Monday or Tuesday or Wednesday, etc.). Considering varying forecasting models, other models could be explored further for possibility of adopting a better model with relatively minimum forecasting error. Also, the period of sales data collected could be extended to one or two years for clearer understanding of factors influencing the sales, and better performance by the models.

  References

[1] Mintzberg, H. (2017). Planning on the left side, managing on the right. In Leadership Perspectives, Routledge, pp. 413-426. http://dx.doi.org/10.4324/9781315250601-31

[2] Altameem, A.A., Aldrees, A.I., Alseed, N.A. (2014). Strategic information systems planning (SISP). Proceedings of the World Congress on Engineering and Computer Science 2014, vol. I., Available from: https://www.iaeng.org/publication/WCECS2014/WCECS2014_pp168-170.pdf.

[3] Shabani, N., Akhtari, S., Sowlati, T. (2013). Value chain optimization of forest biomass for bioenergy production: A review. Renewable and Sustainable Energy Reviews, 23: 299-311. http://dx.doi.org/10.1016/j.rser.2013.03.005

[4] Frechtling, D. (2012). Forecasting tourism demand. Routledge. https://doi.org/10.4324/9780080494968

[5] Armstrong, J.S. (2003). Discovery and communication of important marketing findings: Evidence and proposals. Journal of Business Research, 56(1): 69-84. https://doi.org/10.1016/S0148-2963(02)00386-7

[6] Hugos, M.H. (2018). Essentials of supply chain management. John Wiley & Sons. http://dx.doi.org/10.1002/9781119464495

[7] Hyndman, R.J., Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.

[8] Jagtap, S., Bader, F., Garcia-Garcia, G., Trollman, H., Fadiji, T., Salonitis, K. (2020). Food logistics 4.0: Opportunities and challenges. Logistics, 5(1): 2. http://dx.doi.org/10.3390/logistics5010002

[9] Delucchi, M.A., Jacobson, M.Z. (2011). Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy, 39(3): 1170-1190. http://dx.doi.org/10.1016/j.enpol.2010.11.045

[10] Elrod, C., Murray, S., Bande, S. (2013). A review of performance metrics for supply chain management. Engineering Management Journal, 25(3): 39-50. http://dx.doi.org/10.1080/10429247.2013.11431981

[11] Liu, H., Li, C., Shao, Y., Zhang, X., Zhai, Z., Wang, X., Jiao, M. (2020). Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Journal of infection and public health, 13(2): 287-294. http://dx.doi.org/10.1016/j.jiph.2019.12.008

[12] Rabbani, M.B.A., Musarat, M.A., Alaloul, W.S., Rabbani, M.S., Maqsoom, A., Ayub, S., Altaf, M. (2021). a comparison between seasonal autoregressive integrated moving average (SARIMA) and exponential smoothing (ES) based on time series model for forecasting road accidents. Arabian Journal for Science and Engineering, 46(11): 11113-11138. http://dx.doi.org/10.1007/s13369-021-05650-3

[13] Nalawade, N.S., Pawar, M.M. (2015). Forecasting telecommunications data with autoregressive integrated moving average models. In 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, pp. 1-6. http://dx.doi.org/10.1109/RAECS.2015.7453427

[14] Jere, S., Banda, A., Kasense, B., Siluyele, I., Moyo, E. (2019). Forecasting annual international tourist arrivals in Zambia using Holt-Winters exponential smoothing. Open Journal of Statistics, 9(2): 258-267. http://dx.doi.org/10.4236/ojs.2019.92019

[15] Kazeem, R.A., Amakor, J.U., Ikumapayi, O.M., Afolalu, S.A., Oke‬‬‬‬, W.A. (2022). Modelling the effect of temperature on power generation at a Nigerian agricultural institute. Mathematical Modelling of Engineering Problems, 9(3): 645-654. https://doi.org/10.18280/mmep.090311 

[16] Kazeem, R., Orsarh, E., Ehumadu, N., Igbinoba, S. (2016). Demand forecasting of a fruit juice manufacturing company. International Journal of Scientific & Engineering Research, 7(8): 1135-1143. 

[17] Ren, X.H., Liu, Q., Zhang, Y.M. (2015). The gray prediction GM (1, 1) model in traffic forecast application. Mathematical Modelling of Engineering Problems, 2(1): 17-22. http://dx.doi.org/10.18280/mmep.020105

[18] Kamisan, N.A.B., Lee, M.H., Hassan, S.F., Norrulashikin, S.M., Nor, M.E., Rahman, N.H.A. (2021). Forecasting wind speed data by using a combination of ARIMA model with single exponential smoothing. Mathematical Modelling of Engineering Problems, 8(2): 207-212. https://doi.org/10.18280/mmep.080206