DMFC water management in presence of heat sources

DMFC water management in presence of heat sources

Halitim S. Houria Zitouni Bariza  Haddad Djamel  Benmoussa Hocine 

Department of mechanical, Faculty of technology, University of Hadj Lakhdar, Batna, Algeria

Department of food Technology, Institute of veterinary sciences and agricultural sciences, University of Hadj Lakhdar, Batna

Corresponding Author Email: 
halitim.siham@yahoo.com
Page: 
59-62
|
DOI: 
10.18280/mmep.040112
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

A heat and mass transfer numerical study is conducted in DMFC in presence of the heat sources. The model is used to investigate the current density effect at operation conditions (temperature) and at water, methanol, carbon dioxide and oxygen concentration. For the numerical resolution, governing equations are discretized by the finite volume method. A program written in FORTRAN language was developed in order to obtain the temperature, water, methanol, oxygen and carbon dioxide fields. The results show that there is a temperature rise at the membrane which involves the membrane drying. However, for the water concentration field, a dehydration problem solution in the membrane is considered. The current density is the key parameter simulation since it is present in Joules effect terms.

Keywords: 

DMFC, Methanol, Heat Source, Temperature, FORTRAN

1. Introduction
2. Mathematical Model
3. Governing Equations
4. Results and Discussion
5. Numerical Resolution
6. Conclusions
  References

[1] Zou J., He Y., Miao Z., Li X. (2010). Non-isothermal modeling of direct methanol fuel cell, International Journal of Hydrogen Energy, Vol. 35, pp. 7206- 7216. DOI: 10.1016/j.ijhydene.2010.01.123

[2] Yang X.G., Ye Q., Cheng P. (2014). Oxygen starvation induced cell potential decline and corresponding operating state transitions of a direct methanol fuel cell in galvanostatic regime, Electrochimica Acta, Vol. 117, pp. 179– 191. DOI: 10.1016/j.electacta.2013.11.112

[3] Jewett G., Faghri A., Xiao B. (2009). Optimization of water and air management systems for a passive direct methanol fuel cell, International Journal of Heat and Mass Transfer, Vol. 52, pp. 3564–3575. DOI: 10.1016/j.ijheatmasstransfer.2009.03.006

[4] Rice J., Faghri A. (2006). A transient, multi-phase and multi-component model of a new passive DMFC, International Journal of Heat and Mass Transfer, Vol. 49, pp. 4804–4820. DOI: 10.1016/j.ijheatmasstransfer.2006.06.003

[5] Bahrami H., Faghri A. (2010). Transport phenomena in a semi-passive direct methanol fuel cell, International Journal of Heat and Mass Transfer, Vol. 53, pp. 2563–2578. DOI: 10.1016/j.ijheatmasstransfer.2009.12.050

[6] Xu C., Faghri A. (2010). Water transport characteristics in a passive liquid-feed DMFC, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1951–1966. DOI: 10.1016/j.ijheatmasstransfer.2009.12.060

[7] Jung S., Leng Y., Wang C.Y. (2014). Role of CO2 in methanol and water transport in direct methanol fuel cells, Electrochimica Acta, Vol. 134, pp. 35–48. DOI: 10.1016/j.electacta.2014.04.087

[8] He Y.L., Li X.L., Miao Z., Liu Y.W. (2009). Twophase modeling of mass transfer characteristics of a direct methanol fuel cell, Applied Thermal Engineering, Vol. 29, pp. 1998–2008. DOI: 10.1016/j.applthermaleng.2008.10.004

[9] Li X.Y., Yang W.W., He Y.L., Zhao T.S., Qu Z.G. (2012). Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells, Applied Thermal Engineering, Vol. 48, pp. 392-401. DOI: 10.1016/j.applthermaleng.2011.10.051

[10] Li X.Y., Yang W.W., He Y.L., Zhao T.S., Qu Z.G. (2012). Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells, Applied Thermal Engineering, Vol. 48, pp. 392-401. DOI: 10.1016/j.ijhydene.2009.09.066

[11] Park Y.C., Peck D.H., Donga S.K., Kim S.K., Lim S., Jung D.H., Jang J.H., Lee D.Y. (2011). Operating characteristics and performance stability of 5 W class direct methanol fuel cell stacks with different cathode flow patterns, International Journal of Hydrogen Energy, Vol. 36, pp. 1853-1861. DOI: 10.1016/j.ijhydene.2010.02.018

[12] Bahrami H., Faghri A. (2012). Start-up and steadystate operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol, International Journal of Hydrogen Energy, Vol. 37, pp. 86416-8658. DOI: 10.1016/j.ijhydene.2012.02.038

[13] Kianimanesh A., Yu B., Yang Q., Freiheit T., Xue D., Park S.S. (2012). Investigation of bipolar plate geometry on direct methanol fuel cell performance, International Journal of Hydrogen Energy, Vol. 37, pp. 18403-18411. DOI: 10.1016/j.ijhydene.2012.08.128

[14] Yu B., Yang Q., Kianimanesh A., Freiheit T., Park S.S., Zhao H., Xue D. (2013). A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance, International Journal of Hydrogen Energy, Vol. 38, pp. 9873-9885. DOI: 10.1016/j.ijhydene.2013.05.118

[15] Kalantari H., Baghalha M. (2014). Analyses of mass and heat transport interactions in a direct methanol fuel cell, International Journal of Hydrogen Energy, Vol. 39, pp. 11224-11240. DOI: 10.1016/j.ijhydene.2014.05.048

[16] Li X., Faghri A. (2011). Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures, Energy, Vol. 36, pp. 403-414. DOI: 10.1016/j.energy.2010.10.024

[17] Ge J., Liu H. (2007). A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell, Journal of Power Sources, Vol. 163, pp. 907–915. DOI: 10.1016/j.jpowsour.2006.10.014

[18] Vera M.A. (2007). Single-phase model for liquid-feed DMFCs with non-Tafel kinetics, Journal of Power Sources, Vol. 171, pp. 763–777. DOI: 10.1016/j.jpowsour.2007.05.098

[19] Xiao B., Bahrami H., Faghri A. (2010). Analysis of heat and mass transport in a miniature passive and semi passive liquid-feed direct methanol fuel cell, Journal of Power Sources, Vol. 195, pp. 2248–2259. DOI: 10.1016/j.jpowsour.2009.10.047

[20] Xu C., Faghri A. (2010). Mass transport analysis of a passive vapor-feed direct methanol fuel cell, Journal of Power Sources, Vol. 195, pp. 7011–7024. DOI: 10.1016/j.jpowsour.2010.05.003

[21] Kamaruddin M.Z.F., Kamarudin S.K., Masdar M.S., Daud W.R.W. (2015). Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell, International Journal of Hydrogen Energy, pp. 1-12. DOI: 10.1016/j.ijhydene.2015.06.071

[22] Xu C., Faghri A. (2011). Analysis of an active tubular liquid-feed direct methanol fuel cell, Journal of Power Sources, Vol. 196, pp. 6332-6346. DOI: 10.1016/j.jpowsour.2011.03.038