Remote sensing of vital signs and biomedical parameters: A review

Remote sensing of vital signs and biomedical parameters: A review

Frédéric BousefsafChoubeila Maaoui Alain Pruski 

Laboratory of Conception, Optimization and Systems Modeling (LCOMS), University of Lorraine, LCOMS, F-57000 Metz, France

Corresponding Author Email: 
frederic.bousefsaf@univ-lorraine.fr
Page: 
173-178
|
DOI: 
https://doi.org/10.18280/mmc_c.790404
Received: 
11 September 2018
| |
Accepted: 
31 October 2018
| | Citation

OPEN ACCESS

Abstract: 

According to the World Health Organization, cardiovascular diseases correspond to the prime cause of death globally. Several technologies are employed to measure vital signs remotely. For instance, webcams correspond to ubiquitous systems that can be used to detect cardiovascular pathologies by sensing important physiological parameters like pulse rate. A review of technologies and methods used to remotely measure vital signs and biomedical parameters is proposed in this article. Remote sensing of physiological parameters concerns every person: from healthy, ill or hospitalized persons to people with disabilities or with reduced autonomy.

Keywords: 

vital signs, physiology, remote technologies, cardiovascular system, telemedicine

1. Introduction
2. Review of Methods: Remote Measurement of Physiological and Vital Signs
3. Conclusion
  References

[1] World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013-2020. http://www.who.int/nmh/events/ncd_action_plan/en/

[2] Al-Naji A, Gibson K, Lee SH, Chahl J. (2017). Monitoring of cardiorespiratory signal: Principles of remote measurements and review of methods. IEEE Access 5(17124272): 15776-15790. https://doi.org/10.1109/ACCESS.2017.2735419

[3] Kranjec J, Beguš S, Geršak G, Drnovšek J. (2014). Non-contact heart rate and heart rate variability measurements: A review. Biomed. Signal Process. Control 13: 102-112. https://doi.org/10.1016/j.bspc.2014.03.004

[4] AL-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S. (2011). Respiration rate monitoring methods: A review. Pediatr. Pulmonol 46(6): 523-529. https://doi.org/10.1002/ppul.21416

[5] Marieb EN, Hoehn K. (2013). Human anatomy & physiology. 9th ed. Pearson Edu.

[6] Wu HY, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM Trans Graph 31(4): 65:1-65:8. https://doi.org/10.1145/2185520.2185561

[7] Allen J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3): R1-R39. https://doi.org/10.1109/20.908355

[8] Balakrishnan G, Durand F, Guttag J. (2013). Detecting pulse from head motions in video. Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, 2013, pp. 3430-3437. https://doi.org/10.1109/CVPR.2013.440

[9] Zakrzewski M, Raittinen H, Vanhala J. (2012). Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar. IEEE Sens. J 12(3): 627-634. https://doi.org/10.1109/jsen.2011.2119299

[10] Cardone D, Merla A. (2017). New frontiers for applications of thermal infrared imaging devices: Computational psychopshysiology in the neurosciences. Sensors 17(5): 1042. https://doi.org/10.3390/s17051042

[11] Fei J, Pavlidis I. (2010). Thermistor at a distance: unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng. 57(4): 988-998. https://doi.org/10.1109/TBME.2009.2032415

[12] Pavlidis I, Dowdall J, Sun N, Puri C, Fei J, Garbey M. (2007). Interacting with human physiology. Comput. Vis. Image Underst. 108(1): 150-170. https://doi.org/10.1016/j.cviu.2006.11.018

[13] Hassan M, et al. (2017). Heart rate estimation using facial video: A review. Biomed. Signal Process. Control 38: 346-360.

[14] Kamshilin AA, Nippolainen E, Sidorov IS, Vasilev PV, Erofeev NP, Podolian NP, Romashko RV. (2015). A new look at the essence of the imaging photoplethysmography. Sci. Rep. 5: 10494. https://doi.org/10.1038/srep10494

[15] Takano C, Ohta Y. (2007). Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 29(8): 853-857. https://doi.org/10.1016/j.medengphy.2006.09.006

[16] Verkruysse W, Svaasand LO, Nelson JS. (2008). Remote plethysmographic imaging using ambient light.. Opt. Express 16(26): 21434-21445. https://doi.org/10.1364/OE.16.021434

[17] Wang W. (2017). Robust and automatic remote photoplethysmography. PhD Thesis, Technische Universiteit Eindhoven.

[18] Shao D, Yang Y, Liu C, Tsow F, Yu H, Tao N. (2014). Noncontact monitoring breathing pattern, exhalation flow rate and pulse transit time. IEEE Trans. Biomed. Eng. 61(11): 2760-2767. https://doi.org/10.1109/TBME.2014.2327024

[19] Bousefsaf F, Maaoui C, Pruski A. (2014). Remote detection of mental workload changes using cardiac parameters assessed with a low-cost webcam. Comput. Biol. Med 53: 154-163. https://doi.org/10.1016/j.compbiomed.2014.07.014

[20] Maaoui C, Bousefsaf F, Pruski A. (2016). Automatic human stress detection based on webcam photoplethysmographic signals. J. Mech. Med. Biol. 16(04): 1650039. https://doi.org/10.1142/S0219519416500391

[21] Bousefsaf F, Maaoui C, Pruski A. (2016). Peripheral vasomotor activity assessment using a continuous wavelet analysis on webcam photoplethysmographic signals. Biomed. Mater. Eng. 27(5): 527-538. https://doi.org/10.3233/BME-161606

[22] Wang W, Brinker ACD, Stuijk S, Haan GD. (2017). Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7): 1479-1491. https://doi.org/10.1109/TBME.2016.2609282

[23] Poh MZ, McDuff DJ, Picard RW. (2011). Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1): 7-11. https://doi.org/10.1109/TBME.2010.2086456

[24] Bousefsaf F, Maaoui C, Pruski A. (2013). Continuous wavelet filtering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate. Biomed. Signal Process. Control 8(6): 568-574. https://doi.org/10.1016/j.bspc.2013.05.010

[25] Haan GD, Jeanne V. (2013). Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10): 2878-2886. https://doi.org/10.1109/tbme.2013.2266196

[26] Bousefsaf F, Maaoui C, Pruski A. (2017). Automatic selection of webcam photoplethysmographic pixels based on lightness criteria. J. Med. Biol. Eng. 37(3): 374-385. https://doi.org/10.1007/s40846-017-0229-1

[27] Hurter C, McDuff D. (2017). Cardiolens: remote physiological monitoring in a mixed reality environment. ACM SIGGRAPH 2017 Emerging Technologies, p. 6.

[28] Villarroel M, Guazzi A, Jorge J, Davis S, Watkinson P, Green G, Shenvi A, McCormick K, Tarassenko L. (2014). Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthc. Technol. Lett 1(3): 87-91. https://doi.org/10.1049/htl.2014.0077

[29] Zhang Q, Wu QT, Zhou YM, Wu XY, Ou YS, Zhou HZ. (2017). Webcam-based, non-contact, real-time measurement for the physiological parameters of drivers. Measurement 100: 311-321. https://doi.org/10.1016/j.measurement.2017.01.007

[30] Wang W, Stuijk S, Haan GD. (2017). Living-skin classification via remote-PPG. IEEE Trans. Biomed. Eng. 64(12): 2781-2792. https://doi.org/10.1109/TBME.2017.2676160

[31] Liu S, Yuen PC, Zhang S, Zhao G. (2016). 3D mask face anti-spoofing with remote photoplethysmography. in European Conference on Computer Vision, pp. 85-100. https://doi.org/10.1007/978-3-319-46478-7_6

[32] Lister T, Wright PA, Chappell PH. (2012). Optical properties of human skin. J. Biomed. Opt 17(9): 0909011-09090115. https://doi.org/10.1117/1.JBO.17.9.090901

[33] Van Gastel M, Stuijk S, De Haan G. (2016). New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring. Sci. Rep. 6. https://doi.org/10.1038/srep38609

[34] Shao D, Liu C, Tsow F, Yang Y, Du Z, Iriya R, Yu H, Tao N. (2016). Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Trans. Biomed. Eng 63(6): 1091-1098. https://doi.org/10.1109/TBME.2015.2481896

[35] Liu C, Yang Y, Tsow F, Shao D, Tao N. (2017). Noncontact spirometry with a webcam. J. Biomed. Opt 22(5): 057002–057002. https://doi.org/10.1117/1.JBO.22.5.057002

[36] Al-Naji A, Chahl J. (2017). Simultaneous tracking of cardiorespiratory signals for multiple persons using a machine vision system with noise artifact removal. IEEE J. Transl. Eng. Health Med 5: 1-10. https://doi.org/10.1109/JTEHM.2017.2757485

[37] Van Gastel M, Stuijk S, De Haan G. (2016). Robust respiration detection from remote photoplethysmography. Biomed. Opt. Express 7(12): 4941-4957. https://doi.org/10.1364/BOE.7.004941

[38] Hassan M, Malik A, Fofi D, Saad N, Meriaudeau F. (2017). Novel health monitoring method an using RGB camera. Biomed. Opt. Express 8(11): 4838-4854. https://doi.org/10.1364/BOE.8.004838

[39] Zhang GF, Shan C, Kirenko I, Long X, Aarts RM. (2017). Hybrid optical unobtrusive blood pressure measurements. Sensors 17(7): 1541. https://doi.org/10.3390/s17071541

[40] Sugita N, Yoshizawa M, Abe M, Tanaka A, Homma N, Yambe T. (2018). Contactless technique for measuring blood-pressure variability from one region in video plethysmography. J. Med. Biol. Eng. 1-10. https://doi.org/10.1007/s40846-018-0388-8

[41] Junior AD, Murali S, Rincon F, Atienza D. (2016). Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors. Microprocess. Microsyst. 46: 84-95. https://doi.org/10.1016/j.micpro.2016.06.001