Characterizations of ZnS/CuInS2 Film Fabricated by Electrochemical Deposition Process for Solar Cell Devices

Characterizations of ZnS/CuInS2 Film Fabricated by Electrochemical Deposition Process for Solar Cell Devices

Yih-Min Yeh Hsiang ChenChuan Hao Liao Ching Bang Chen Bin Yi Chen 

Graduate School of Opto-Mechatronics and Materials, WuFeng University, Minhsiung

Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
103-106
|
DOI: 
https://doi.org/10.14447/jnmes.v15i2.78
Received: 
9 November 2011
|
Accepted: 
8 December 2011
|
Published: 
1 February 2012
| Citation
Abstract: 

In this study, CuInS2 (CIS) films were fabricated by a two-step, non-vacuum process. Electrochemical deposition (ECD) was first used to prepare Cu-In precursors on Mo substrate under constant current. Then, CuInS2 films were prepared by sulfurization of the Cu-In precursors in sulfur atmosphere. The surface morphologies, compositions, and transmittance of the CuInS2 and ZnS films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and UV-VIS, respectively. The results show that a high-quality CIS thin film solar cells by low-cost, non-vacuum process could be obtained.

Keywords: 

ZnS/CuInS2 layer, electrochemical deposition, chemical bath deposition, CIS thin film solar cells

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] Klenk, R., Klaer, J., Scheer, R., Lux-Steiner, M. C., Luck, I., Meyer, N., & Rühle, Thin Solid Films, 480, 509 (2005).

[2] Klaer J., Bruns J., Henninger R., Siemer K., Klenk R., Ellmer K., & Bräunig D., Semiconductor Science and Technology, 13, 1456 (1998).

[3] Y. Ogawa, S. Uenishi, K. Tohyama, K. Ito, Solar Energy Materials and Solar Cells, 35, 157 (1994).

[4] Y. Yamamoto, T. Yamaguchi, Y. Demizu, T. Tanaka, A. Yoshida, Thin Solid Films, 281, 372 (1996).

[5] H. Hwang, C. Tu, J. Ma, C. Sun, Solar Energy Materials, 2, 433 (1980).

[6] R. Scheer, I. Luck, M. Kanis, M. Matsui, T. Watanabe, T. Yamamoto, Thin Solid Films, 392, 1 (2001).

[7] M. Gossla, H. Metzner, H.E. Mahnke, Thin Solid Films, 387, 77 (2001).

[8] M. Kanzari, M. Abaab, B. Rezig, Materials Research Bulletin, 32, 1009 (1997).

[9] R. Scheer, M. Alt, I. Luck, H.J., Solar Energy Materials and Solar Cells, 49, 423 (1997).

[10] Krunks, M., Kijatkina, O., Rebane, H., Oja, I., Mikli, V., & Mere, Thin Solid Films, 403, 71 (2002).

[11] M. Ortega-López, Thin Solid Films, 330, 96 (1998).

[12] M. Krunks, O. Kijatkina, H. Rebane, I. Oja, V. Mikli, A. Mere, Thin Solid Films, 403, 71 (2002).

[13] M. Krunks, O. Bijakina, T. Varema, V. Mikli, E. Mellikov, Thin Solid Films, 338, 125 (1999).

[14] S. Nakamura, A. Yamamoto, Solar Energy Materials and Solar Cells, 75, 81 (2003).

[15] H.M. Pathan, C.D. Lokhande, Applied Surface Science, 239, 11 (2004).

[16] B. Asenjo, A. Chaparro, M. Gutierrez, J. Herrero, Thin Solid Films, 511, 117 (2006).

[17] R. Wijesundera, W. Siripala, Solar Energy Materials and Solar Cells, 81, 147 (2004).

[18] C. Broussillou, M. Andrieux, M. Herbst-Ghysel , M. Jeandin, J.S. Jaime-Ferrer, S. Bodnar, E. Morin, Solar Energy Materials and Solar Cells, 95, 13 (2011).

[19] S.M. Lee, S. Ikeda, T. Yagi, T. Harada, A. Ennaoui, M. Matsumura, Physical Chemistry Chemical Physics, 13, 6662 (2011).

[20] T. Nakada, M. Hongo, E. Hayashi, Thin Solid Films,431, 242 (2003).

[21] Q. Liu, M. Guobing, A. Jianping, Appl. Surf. Sci., 254, 5711 (2008).

[22] B. Asenjo, A.M. Chaparro, M.T. Gutiérrez, J. Herrero, J. Klaer, Sol. Energy Mater. Sol. Cells, 92, 302 (2008).

[23] M. Calixto, P. Sebastian, R. Bhattacharya, R. Noufi, Solar Energy Materials and Solar Cells, 59, 75 (1999).