Development of a 3D Dynamic Flood Web GIS Visualisation Tool

Development of a 3D Dynamic Flood Web GIS Visualisation Tool

S. Van Ackere H. Glas J. Beullens G. Deruyter A. De Wulf P. De Maeyer 

Department of Geography, Ghent University, Krijgslaan 281 (building S8), Ghent, Belgium

Department of Civil Engineering, Ghent University, V.Vaerwyckweg 1, Ghent, Belgium

Page: 
560-569
|
DOI: 
https://doi.org/10.2495/SAFE-V6-N3-560-569
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Low elevation coastal areas are vulnerable to the effects of sea level rise and to an increase in the frequency and severity of storm surge events due to climate change.Coastal urban areas are at risk because coastal flooding causes extensive damage to energy and transportation infrastructure, disruptions to the delivery of services, devastating tolls on the public’s health and,occasionally, significant loss of life. Although scientists widely stress the compelling need to mitigate and adapt to climate change, public awareness lags behind. Because WebGIS maps (web-based geographic information systems) quickly convey strong messages, condense complex information, engage people on issues of environmental change, and motivate personal actions, this paper focuses on searching the ideal flood assessment WebGIS method to encourage people to mitigate and adapt to climate change. Surveys demonstrated that 3D visualisations have an enormous added value because they are more vivid and therefore more understandable and make it easier to imagine the consequences of a flood than2D visualisations. In this research, the WebGIS will be created using Ol3-Cesium and openlayers to visualise a flood event by dynamic layers in a 2D/3D environment.

Keywords: 

coastal flooding, flooding analysis,landscape visualisation, WebGIS visualisation

  References

[1] Lichter, M., Vafeidis, A.T., Nicholls, R.J.&Kaiser, G.,Exploring data-related uncertainties in analyses of land area and population in the “Low-Elevation Coastal Zone” (LECZ). Journal of Coastal Research,27, pp. 757–68, 2010.

[2] McGranahan, G., Balk, D.&Anderson, B.,The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment&Urbanization,19, pp. 17–37, 2007. doi:10.1177/0956247807076960. http://dx.doi.org/10.1177/0956247807076960

[3] Deconto, R.M.&Pollard, D.,Contribution of Antarctica to past and future sea-level rise. Nature, 531, pp. 591–597, 2016. doi:10.1038/nature17145. http://dx.doi.org/10.1038/nature17145

[4] Vojinovic, Z.,Flood Risk: The Holistic Perspective. vol. 1. London IWA Publishing: London, 2015.

[5] Re, M.,Natural disaster - Annual statistics 2015,available at: http://www.munichre.com/ en/reinsurance/business/non-life/natcatservice/annual-statistics/index.html (accessed 15 March 2016).

[6] Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J.O., Hay, J.E., McLean, R.F., SR and CDW. Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK, 2007.

[7] Bertin, X., Li, K., Roland, A., Zhang, Y.J., Breilh, J.F.&Chaumillon,E.,A modelingbased analysis of the flooding associated with Xynthia, central Bay of Biscay.Coastal Engineering.94, pp. 80–89, 2014, doi:10.1016/j.coastaleng.2014.08.013. http://dx.doi.org/10.1016/j.coastaleng.2014.08.013

[8] Jelesnianski, C.P.,A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Monthly Weather Review,93, pp. 343–358, 1965. doi:10.1175/1520-0493(1993).

[9] Sayers, P., Yuanyuan, L., Galloway, G., Penning-Rowsell, E., Fuxin, S., Kang, W., et al. Flood Risk Management: A Strategic Approach, UNESCO: Paris, 2013.

[10] Sheppard, S.R.J.,Landscape visualisation and climate change: the potential for influencing perceptions and behaviour. Environmental Science&Policy,8, pp. 637–654, 2005. doi:10.1016/j.envsci.2005.08.002.

[11] NOAA Coastal Services Center. Sea Level Rise and Coastal Flooding Impacts 2015,available at: https://coast.noaa.gov/slr/ (accessed March 29, 2016).

[12] JCNERR, CRSSA, NOAA CSC SN, Rutgers University. Sea Level Rise and Coastal Flooding Impacts 2015,available at: http://54.243.129.238/SLR.html# (accessed 29 March 2016).

[13] Monash University. Lakes Entrance Flood-Risk Visualisation n.d,available at: http:// sahultime.monash.edu.au/LakesEntrance/ (accessed 29 March 2016).

[14] Leefmilieu Brussel. Overstroming n.d,available at: http://geoportal.ibgebim.be/webgis/ Overstroming_kaart.phtml (accessed 11 April 2016).

[15] Monash University. Explore SahulTime n.d,available at: http://sahultime.monash.edu. au/explore.html (accessed 29 March 2016).

[16] SBEP & MOTE Marine Laboratory. Interactive Sea Level Rise Web Map n.d. available at: http://geology.com/sea-level-rise/florida.shtml (accessed 29 March 2016).

[17] NOAA—MS-AL Sea Grant U. Sea Level Rise Visualization for AL, MS, & FL n.d. available at: http://gom.usgs.gov/slr/slr.aspx (accessed March 29, 2016).

[18] Climate Central. Surging Seas: Risk Zone Map, n.davailable at: http://ss2.climatecentral.org/#12/40.7298/-74.0070?show=satellite&projections=0-RCP85SLR&level=5&unit=feet&pois=hide (accessed 29 March  2016).

[19] NY Times. What Could Disappear n.d,available at: http://www.nytimes.com/interactive/2012/11/24/opinion/sunday/what-could-disappear.html?_r=0 (accessed 29 March 2016).

[20] Pacific Institute. Pacific Institute: Sea-Level Rise 2009,available at: http://www2.pacinst.org/reports/sea_level_rise/gmap.html (accessed 29 March 2016).

[21] PostGIS community. ST_ClusterIntersecting n.d. available at: http://postgis.net/docs/ ST_ClusterIntersecting.html (accessed 29 March 2016).

[22] Tingle, A.,Flood Maps n.d,available at: http://flood.firetree.net/?ll=48.3416,14.6777&z =13&m=7 (accessed 29 March  2016).

[23] Burle, S.,Flood Map: Water Level Elevation Map n.d. available at: http://www.floodmap.net/?ll=51.256222,4.120335&z=9&e=0 (accessed 29 March  2016).

[24] Leskens, J.G., Kehl, C., Tutenel, T., Kol, T., de Haan, G.,Stelling, G., et al. An interactive simulation and visualization tool for flood analysis usable for practitioners. Mitigationand Adaptation Strategiesfor Global Change, 2015. doi:10.1007/s11027-015-9651-2. http://dx.doi.org/10.1007/s11027-015-9651-2

[25] Ruppel, U.&Schatz, K.,Designing a BIM-based serious game for fire safety evacuation simulations.Advanced Engineering Informatics,25, pp. 600–611, 2011. doi:10.1016/j. aei.2011.08.001. http://dx.doi.org/10.1016/j.aei.2011.08.001

[26] Christodoulou, S.E., Vamvatsikos, D.&Georgiou, C.,A BIM-based framework for forecasting and visualizing seismic damage, cost and time to repair. eWork and ebusinessin Architecture Engineeringand ConstructionECPPM 2010,CRC Press: Boca Raton, 2010:33–38.

[27] Isikdag, U.,A SWOT analysis on the implementation of building information models within the geospatial environment. Urban and Regional Data Management: UDMS Annual,Taylor & Francis: London, pp. 15–30, 2009.

[28] Kemec, S., Zlatanova, S.&Duzgun, H.S.,A framework for defining a 3d model in support of risk management. Geographic Informationand Cartographyfor Risk and Crisis Management,pp. 69–82,2010, doi:10.1007/978-3-642-03442-8. http://dx.doi.org/10.1007/978-3-642-03442-8

[29] Mioc, D., Anton, F., Nickerson, B., Santos, M., Adda, P., Tienaah, T., Ahmad, A., Mezouagh, M., MacGillivray AM and PT. Flood progression modelling and impact analysis. Gi4DM (Geoinformation Disaster Manag. Conf., 2011.

[30] OpenWebGis. Atlantic Hurricane Tracks with OpenWebGIS n.d. available at: https:// www.youtube.com/watch?v=y0UAV9jYsXc (accessed April 11, 2016).

[31] Pistrika, A.,Flood damage estimation based on flood simulation scenarios and a GIS platform. European Water,30, pp. 3–11, 2010.

[32] TUFLOW n.d. available at: http://www.tuflow.com/ (accessed 4 April 2016).

[33] Disastermap. Residential structural damage in New Orleans n.d. available at: http:// disastermap.net/wordpress/wp-content/uploads/2015/08/Residential-Damage-Points. jpeg (accessed 12 April 2016).

[34] Amirebrahimi, S., Rajabifard, A., Mendis, P.&Ngo, T.,A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration. International Journalof DigitalEarth,1–24, 2015. doi:10.1080/17538947.2015.1034201. http://dx.doi.org/10.1080/17538947.2015.1034201

[35] Amirebrahimi, S., Rajabifard, A., Mendis, P.&Ngo, T.,A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building.CEUR Workshop Proceeding,1323, pp. 78–89, 2015.

[36] Varduhn,V. & Mundani R.P.&Rank, E., Multi-resolution models: recent progress in coupling 3d geometry to environmental numerical simulation. In: 3D Geoinformation Science,eds. M. Breunig,M. Al-Doori, E. Butwilowski, P.V. Kuper, J. Benner &K.H. Haefele, Springer International Publishing,pp. 55–69, 2015. doi:10.1007/978-3-31912181-9. http://dx.doi.org/10.1007/978-3-319-12181-9

[37] Cozzi, P., 3D Buildings in Cesium n.d,available at: http://cesiumjs.org/2015/04/27/3DBuildings-in-Cesium/ (accessed 8 April, 2016).

[38] Cozzi, P.,Ol3-Cesium by openlayers n.d,available at: http://openlayers.org/ol3-cesium/ (accessed 8 April 2016).

[39] Flanders Innovation & Entrepreneurship. Climate Resilience Coast - CREST 2015,available at: http://www.crestproject.be/en (accessed 12 April 2016).

[40] DeVito K. Assessing Flood Risk with 3D GIS - A NEMAC study of Ft. Lauderdale 2015. https://www.linkedin.com/pulse/assessing-flood-risk-3d-gis-nemac-study-ft-kevin-devito.