© 2022 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
OPEN ACCESS
Despite the efforts made towards circularity approaches in waste management, waste-to-energy (WtE) processes still represent a key step because they allow recovering energy from waste, reducing the amount of waste residuals that require landfill disposal and reusing part of the residuals for specific purposes (e.g. in the construction sector). However, the direct (incineration) or indirect (gasification) combustion of waste generates relatively high emissions of several air pollutants, with different levels of toxicity. In specific situations, the presence of a waste combustion plant may be incompatible with the presence of population nearby, especially in areas where the dispersion of air pollutants is limited by the local morphology and/or by unfavourable meteorological conditions. In such contexts, an alternative option exists: the conversion of the syngas produced by waste gasification into commercial products or fuels. This alternative would guarantee a significant reduction of the impacts on the local air quality, and it is expected to increase the level of acceptability of the WtE sector by the population: the syngas would not be burned locally to generate energy, but it would be used to produce valuable products or replace traditional fuels with more sustainable alternatives. Thus, this paper aims at discussing the potential local impacts of traditional WtE plants and the opportunities related to alternative WtE approaches that may increase the level of sustainability of this sector. This paper will make a specific reference to mountainous regions, where the atmospheric dispersion of air pollutants may be negatively affected by the local morphology. To better illustrate the potential issues involved, some case studies located in an Alpine valley of Italy will be presented and discussed.
air pollution, atmospheric dispersion, emissions, gasification, human exposure, incineration, syngas, waste management
[1] Ding, Z., Zhu, M., Tam, V. W. Y., Yi, G. & Tran, C. N. N., A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages. Journal of Cleaner Production, 176, pp. 676–692, 2018. https://doi.org/10.1016/j.jclepro.2017.12.101
[2] Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E., Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environment International, 68, pp. 16–24, 2014. https://doi.org/10.1016/j.envint.2014.03.004
[3] Sauve, G. & Van Acker, K., The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision
making. Journal of Environmental Management, 261, p. 110216, 2020. https://doi.
org/10.1016/j.jenvman.2020.110216
[4] Nanda, S. & Berruti, F., Municipal solid waste management and landfilling technologies: A review. Environmental Chemistry Letters, 19(2), pp. 1433–1456, 2021. https://doi.org/10.1007/s10311-020-01100-y
[5] Sereda, T. G. & Kostarev, S. N., Environmental management modelling in the areas of waste landfilling. IOP Conference Series: Materials Science and Engineering, 450(6), p. 062009, 2018. https://doi.org/10.1088/1757-899x/450/6/062009
[6] Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste; EUR-Lex. Online, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01999L0031-20180704. Accessed on: 15 Mar. 2022.
[7] Adami, L. & Schiavon, M., From circular economy to circular ecology: A review on the solution of environmental problems through circular waste management approaches. Sustainability, 13(2), p. 925, 2021. https://doi.org/10.3390/su13020925
[8] Arena, U., Ardolino, F. & Di Gregorio, F., A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management, 41, pp. 60–74, 2015. https://doi.org/10.1016/j.wasman.2015.03.041
[9] Kundariya, N., Mohanty, S. S., Varjani, S., Hao Ngo, H. W. C., Wong, J., Chang, J. S., Young, Ng. H., Kim, S. H. & Bui, X. T., A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology, 342, p. 125982, 2021. https://doi.org/10.1016/j.biortech.2021.125982
[10] Batista, M., Goyannes Gusmão Caiado, R., Gonçalves Quelhas, O. L., Brito Alvez Lima, G., Leal Filho, W. & Rocha Yparraguirre, I. T. A framework for sustainable and integrated municipal solid waste management: Barriers and critical factors to developing countries. Journal of Cleaner Production, 312, p. 127516, 2021. https://doi.org/10.1016/j.jclepro.2021.127516
[11] Safar, K. M., Bux, M. R., Faria, U. & Pervez, S., Integrated model of municipal solid waste management for energy recovery in Pakistan. Energy, 219, p. 119632, 2021. https://doi.org/10.1016/j.energy.2020.119632
[12] Cocarta, D. M., Rada, E. C., Ragazzi, M., Badea, A. & Apostol, T., A contribution for a correct vision of health impact from municipal solid waste treatments, Environmental Technology, 30(9), pp. 963–968, 2009. https://doi.org/10.1080/09593330902989958
[13] Russo, S. & Verda, V., Exergoeconomic analysis of a mechanical biological treatment plant in an integrated solid waste management system including uncertainties. Energy,198, p. 117325, 2020. https://doi.org/10.1016/j.energy.2020.117325
[14] Chen, G., Wang, X., Li, J., Wang, Y., Wu, X., Velichkova, R., Cheng, Z. & Ma, W. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge: A case study in China. Science of the Total Environment, 647, pp. 1433–1443, 2019. https://doi.org/10.1016/j.scitotenv.2018.08.104
[15] Subiza-Pérez, M., Santa Marina, L., Irizar, A., Gallastegi, M., Anabitarte, A., Urbieta, N., Babarro, I., Molinuevo, A., Vozmediano, L. & Ibarluzea, J., Explaining social acceptance of a municipal waste incineration plant through sociodemographic and psychoenvironmental variables. Environmental Pollution, 263, p. 114504, 2020. https://doi.org/10.1016/j.envpol.2020.114504
[16] The role of waste incineration in Germany; Umweltbundesamt. Online, https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3872.pdf Accessed on: 14 Mar. 2022.
[17] Schiavon, M., Torretta, V., Rada, E. C. & Ragazzi, M., State of the art and advances in the impact assessment of dioxins and dioxin-like compounds. Environmental Monitoring and Assessment, 188(57), pp. 1–20, 2016. https://doi.org/10.1007/s10661-015-5079-0
[18] Schiavon, M., Ragazzi, M., Rada, E. C., Magaril, E. & Torretta, V., Towards the sustainable management of air quality and human exposure: Exemplary case studies. WIT Transactions on Ecology and the Environment, 230, pp. 489–500, 2018.
[19] Laiti, L., Giovannini, L., Zardi, D., Belluardo, G. & Moser, D., Estimating hourly beam and diffuse solar radiation in an alpine valley: A critical assessment of decomposition models. Atmosphere, 9(4), p. 117, 2018. https://doi.org/10.3390/atmos9040117
[20] Li, Y., Campana, M., Reimann, S., Schaub, D., Stemmler, K., Staehelin, J. & Peter, T., Hydrocarbon concentrations at the Alpine mountain sites Jungfraujoch and Arosa. Atmospheric Environment, 39(6), pp. 1113–1127, 2005. https://doi.org/10.1016/j.atmosenv.2004.09.084
[21] Hazenkamp-Von Arx, M. E., Schindler, C., Ragettli, M. S., Künzli, N. Braun-Fahrländer, C. & Liu, L. J. S., Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: A cross-sectional study. Environmental Health: A Global Access Science Source, 10(1), p. 13, 2011. https://doi.org/10.1186/1476-069x-10-13
[22] Alonso-Blanco, E., Castro, A., Calvo, A. I., Pont, V., Mallet, M. & Fraile, R. Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area. Science of the Total Environment, 619–620, pp. 988–1002, 2018. https://doi.org/10.1016/j.scitotenv.2017.11.142
[23] Waste–to–Energy in Austria, Whitebook – Figures, Data, Facts. Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, 2015.
[24] Statistiche ISTAT; Istituto Italiano di Statistica. Online, http://dati.istat.it/. Accessed on: 09 Mar. 2022.
[25] Bilancio e Relazioni 2020; Autostrada del Brennero. Online, https://www.autobrennero.it/documenti/trasparenza/bilanci/Bilancio_2020.pdf. Accessed on: 09 Mar. 2022.
[26] Falocchi, M., Zardi, D. & Giovannini, L., Meteorological normalization of NO2 concentrations in the Province of Bolzano (Italian Alps). Atmospheric Environment, 246, p. 118048, 2021. https://doi.org/10.1016/j.atmosenv.2020.118048
[27] Ragazzi, M., Rada, E. C. & Schiavon, M., Municipal solid waste management during the SARS-COV-2 outbreak and lockdown ease: Lessons from Italy. Science of the Total Environment, 745, p. 141159, 2020. https://doi.org/10.1016/j.scitotenv.2020.141159
[28] Rada, E. C., Zatelli, C., Mattolin, P., Municipal solid waste selective collection and tourism. WIT Transactions on Ecology and the Environment, 180, pp. 187–197, 2014.
[29] Coller, G., Schiavon, M. & Ragazzi, M., Environmental and economic sustainability in public contexts: The impact of hand-drying options on waste management, carbon emissions and operating costs. Environment, Development and Sustainability, 23, pp. 11279–11296, 2021. https://doi.org/10.1007/s10668-020-01109-x
[30] Termovalorizzatore rifiuti residui Bolzano – Autorizzazione Integrata Ambientale; Provincia Autonoma di Bolzano – Alto Adige. Online, http://www.provinz.bz.it/service/resdownload.aspx?source=VIA-UVP&ID=F01C7619D29C2838E040007F01003CC6. Accessed on: 08 Mar. 2022.
[31] Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste; EUR-Lex. Online, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0851. Accessed on: 07 Mar. 2022.
[32] Archivio procedure VIA, VAS, Screening, AIA; Provincia Autonoma di Bolzano – Alto Adige. Online, https://ambiente.provincia.bz.it/valutazioni-ambientali/archivio-procedure-via-vas-screening-aia.asp. Accessed on: 08 Mar. 2022.
[33] Barbone, F., Brevi, F., Ghezzi, U., Ragazzi, M. & Ventura, A., Concessione di lavori per la progettazione, realizzazione e gestione dell’impianto di combustione o altro trattamento termico con recupero energetico per rifiuti urbani e speciali assimilabili in località Ischia Podetti, nel Comune di Trento – Studio di fattibilità. Provincia Autonoma di Trento, 2009.
[34] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control); EUR-Lex. Online, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010L0075. Accessed on: 08 Mar. 2022.
[35] Adami, L., Schiavon, M. & Rada, E.C., Potential environmental benefits of direct electric heating powered by waste-to-energy processes as a replacement of solid-fuel combustion in semi-rural and remote areas. Science of the Total Environment, 740, p. 140078, 2020. https://doi.org/10.1016/j.scitotenv.2020.140078
[36] Tomasi, E., Giovannini, L., Falocchi, M., Antonacci, G., Jiménez, P. A., Kosovic, B., Alessandrini, S., Zardi, D., Delle Monache, L. & Ferrero, E., Turbulence parameterizations for dispersion in sub-kilometer horizontally non-homogeneous flows. Atmospheric Research, 228, pp. 122–136, 2019. https://doi.org/10.1016/j.atmosres.2019.05.018
[37] Termovalorizzatore Bolzano; Eco Center. Online, https://www.eco-center.it/it/attivitaservizi/ambiente/impianti/impianto-di-termovalorizzazione-897.html. Accessed on: 08 Mar. 2022.
[38] Arena, U., Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32, pp. 625–639, 2012. https://doi.org/10.1016/j.wasman.2011.09.025
[39] Wetherold, B., Orr, D. & Maxwell, D., A comparison of gasification and incineration of hazardous wastes – Final Report. U.S. Department of Energy, 2000.
[40] Schiavon, M., Adami, L., Torretta, V. & Tubino, M., Environmental balance of an innovative waste-to-energy plant: The role of secondary emissions. International Journal of Environmental Impacts, 3(1), pp. 84–93, 2020. https://doi.org/10.2495/ei-v3-n1-44-55
[41] Rada, E. C., Ragazzi, M. & Schiavon, M., Assessment of the local role of a steel making plant by POPs deposition measurements. Chemosphere, 110, pp. 53–61, 2014. https://doi.org/10.1016/j.chemosphere.2014.03.024
[42] Liu, B. & Rajagopal, D., Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nature Energy, 4(8), pp. 700–708, 2019. https://doi.org/10.1038/s41560-019-0430-2
[43] Rada, E. C., Schiavon, M. & Torretta, V., A regulatory strategy for the emission control of hexavalent chromium from waste-to-energy plants. Journal of Cleaner Production, 278, p. 123415, 2021. https://doi.org/10.1016/j.jclepro.2020.123415
[44] Emissioni degli inceneritori e modelli di ricaduta; Regione Emilia-Romagna. Online, https://www.arpae.it/it/documenti/pubblicazioni/i-quaderni-di-moniter. Accessed on: 11 Mar. 2022.
[45] Osservatorio IPCC – Autorizzazione Integrata Ambientale; Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna. Online, http://ippc-aia.arpa.emr.it/ippc-aia/DettaglioAutorizzazionePub.aspx?id=72727. Accessed on: 11 Mar. 2022.
[46] Osservatorio IPCC – Autorizzazione Integrata Ambientale; Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna. Online, http://ippc-aia.arpa.emr.it/ippc-aia/DettaglioImpiantoPub.aspx?id=941. Accessed on: 11 Mar. 2022.