Techno-Economic Comparison of Renewable Energy Systems Using Multi-Pole System Analysis (Mpsa)

Techno-Economic Comparison of Renewable Energy Systems Using Multi-Pole System Analysis (Mpsa)

Mario Holl Max F. Platzer Peter F. Pelz 

Technische Universität Darmstadt, Chair of Fluid Systems, Darmstadt, Germany

AeroHydro Research & Technology Associates, Pebble Beach, California, USA

Page: 
371-381
|
DOI: 
https://doi.org/10.2495/EQ-V1-N4-371-381
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The recently published method of multi-pole system analysis (MPSA) is used to techno-economically compare two wind-energy converters: offshore wind turbines and the energy ship concept. According to the method, both systems are (i) modeled, (ii) energetically and economically analyzed, (iii) techno- economically optimized and, finally, (iv) expected uncertainties are calculated and assessed. The results of the method are used to derive the necessary cost reduction of the wind-energy converters to be economically competitive to fossil-fuel-based technologies.

Keywords: 

energy ship, holistic system analysis, multi-pole system analysis, techno-economic analysis, technology comparison, wind-energy converter

  References

[1] Holl, M., Platzer, M. & Pelz, P.F., Optimal energy systems design applied to an innova- tive ocean-wind energy converter. Proceedings of the 7th International Conference on Sustainable Development and Planning, WIT Press: Istanbul, Turkey, pp. 547–557, 2015. http://dx.doi.org/10.2495/sdp150471

[2] Holl, M., Platzer, M. & Pelz, P.F., Techno-economical system optimisation and its application to an energy system. Energy- Science and Technologie EST, KIT Karlsruhe: Karlsruhe, Germany, p. 406, 2015.

[3] Pelz, P.F., Holl, M. & Platzer, M., Analytical method towards an optimal energetic and economical wind-energy converter. Energy, 94, pp. 344-351, 2016. http://dx.doi.org/10.1016/j.energy.2015.10.128

[4] Holl, M. & Pelz, P.F., Multi-pole system analysis (MPSA) - A systematic method towards techno-economic optimal system design. Applied Energy, 169, pp. 937–949, 2016. http://dx.doi.org/10.1016/j.apenergy.2016.02.076

[5] King, D., Browne, J., Layard, R., O’Donnell, G., Rees, M., Stern, N. & Turner, A., A global apollo programme to combat climate change. Report, LSE - The London School of Economics and Political Science, 2015.

[6] Betz, A., Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26, pp. 307–309, 1920.

[7] Tietjens, O.K.G. & Prandtl, L., Applied Hydro- and Aeromechanics: Based on Lectures of L. Prandtl, volume 2, Courier Corporation, 1957.

[8] Engel, P., Berechnung der optimalen Auslegung von Offshore-Windkraftanlagen zur Erhö- hung der Versorgungssicherheit. Dissertation, Technische Universität Darmstadt, 2014.

[9] Holl, M., Janke, T., Pelz, P.F. & Platzer, M., Sensitivity analysis of a techno-economic optimal wind-energy converter. Proceedings of the 2nd International Conference on Next Generation Wind Energy, Lund, Sweden, 2016.

[10] Pianosi, F., Sarrazin, F. & Wagener, T., A Matlab toolbox for Global Sensitivity Analy- sis. Environmental Modelling & Software, 70, pp. 80–85, 2015. http://dx.doi.org/10.1016/j.envsoft.2015.04.009

[11] Pianosi, F. & Wagener, T., A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environmental Modelling & Software, 67, pp. 1–11, 2015. http://dx.doi.org/10.1016/j.envsoft.2015.01.004