Energy harvesting for IoT road monitoring systems

Energy harvesting for IoT road monitoring systems

Rosario FedeleMassimo Merenda Filippo Giammaria Praticò Riccardo Carotenuto Francesco Giuseppe Della Corte 

Mediterranea University of Reggio Calabria, Via Graziella – Feo di Vito, Reggio Calabria 89123, Italy

HWA S.r.l., Via Reggio Campi II Tr. 135, Reggio Calabria 89126, Italy

Corresponding Author Email:
| |
| | Citation



Internet of Things (IoT) solutions guarantee the high performance requested by users and authorities in terms of efficiency, sustainability, connectivity, and durability for modern transportation infrastructures, allowing, at the same time, small size, low power consumption, wireless transmission and easily deployable solutions. IoT monitoring systems powered through Energy Harvesting Technologies (EHTs) are often indicated as the most efficient solutions to address these requests because of several advantages (e.g., remote management simplification, independence from electricity grid). In this paper, the most used EHTs in the field of road infrastructures were analyzed and, among them, a photovoltaic standalone system (PVSS) was selected and considered as the power supply unit of an electronic structural health monitoring (SHM) system. In particular, a network of sensor units (SUs), wirelessly connected to one central unit (CU), acting as an innovative road pavement monitoring system solution was taken in account as benchmark. Consequently, the objective of this study is to draw guidelines for the designer that can establish the proper sizing of the PVSS, based on the energy consumption of the SHM system, according to multiple factors, such as typology and number of sensors, frequency of measurements, duty cycle, and days of autonomy.


energy harvesting, internet of things, photovoltaic standalone system, road pavement, structural health monitoring system

1. Introduction
2. Motivations and objectives
3. Road pavement SHM system: characteristics
4. Results and discussions
5. Conclusion

Affordable Solar. Available: 

Almeida C. (2016). Integração de sensores inteligentes para a supervisão remota de subestações secundárias de distribuição de energia eléctrica, M.S. thesis, Dep. Phys., Univ. Sc. & Tech., Coimbra, PT, 2016.

Bataineh K., Taamneh Y. (2017). Performance analysis of stand-alone solar dish Stirling system for electricity generation. International Journal of Heat and Technology IJHT, Vol. 35, No. 1, pp. 498-508.   

Chabane F., Laznek I., Bensahal D. (2018) Prediction of global solar radiation on the horizontal area with the effect of relative humidity part: I. Italian Journal of Engineering Science: Tecnica Italiana IJES, Vol. 61+1, No. 2, pp. 115-118. 

Dementyev S., Taylor H. S., Smith J. (2013). Power consumption analysis of bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. Presented at IEEE-IWS13 Annual Meeting. 

Dezfooli A. S., Nejad F. M., Zakeri H., Kazemifard S. (2017). Solar pavement: A new emerging technology. Solar En., Vol. 149, pp. 272–284. 

Dhakar L. (2017). Triboelectric devices for power generation and self-powered sensing applications.  

Duarte F., Ferreira A. (2016). Energy harvesting on road pavements: State of the art. Presented at ICE– Energy16 Annual Meeting. 

ENEA. Available:  

Farris I., Pizzi S., Merenda M., Molinaro A., Carotenuto R., Iera A. (2017). 6lo-RFID: A framework for full integration of smart UHF RFID tags into the internet of things. IEEE Netw, Vol. 31, No. 5, pp. 66-73. 

Fedele R., Praticò F. G., Carotenuto R., Della Corte F. G. (2017). Sensing road pavement health status through acoustic signals analysis. Presented at PRIME17 Annual Meeting.  

Felini C., Merenda M., Della Corte F. G. (2014). Dynamic impedance matching network for RF energy harvesting systems. Presented at RFID-TA14 Annual Meeting.  

Grace R. (2015). Sensors to support the IoT for infrastructure monitoring: Technology and applications for smart transport/smart buildings. Presented at MEPTEC-IoT15 Annual Meeting.   

Guo L., Lu Q. (2017). Modeling a new energy harvesting pavement system with experimental verification. Appl En., Vol. 208, pp. 1071–1082. 

Hasni H., Alavi A. H., Chatt K., Lajnef N. (2017). A self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete pavements: Theoretical/numerical modelling. Constr & Build Mat., Vol. 144, pp. 728–746. 

Hyder F., Sudhakar K., Mamat R. (2018). Solar PV tree design: A review. Renew & Sust En Rev., Vol. 82, pp. 1079–1096. 

JRC Europe. Available: 

Kazem H. A., Khatib T., Sopian K. (2013). Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. En & Build., Vol. 61, pp. 108–115. 

Lafarge B., Delebarre C., Grondel S., Curea O., Hacala A. (2015). Analysis and optimization of a piezoelectric harvester on a car damper. Presented at ICU15 Annual Meeting. 

Lee J., Choi B. (2014). Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. En Conv & Man. Vol. 78, pp. 32–38. 

Mannion P. (2017). Comparing low-power wireless technologies (Part 1). Digi-Key's North American Editors. Available:  

Mekki K., Bajic E, Chaxel F., Meyer F. (2018). A comparative study of LPWAN technologies for large-scale IoT deployment. 

Merenda M., Farris I., Felini C., Militano L., Spinella S. C., Della Corte F. G., Iera A. (2014). Performance assessment of an enhanced RFID sensor tag for long-run sensing applications. 13th IEEE SENSORS Conference. 

Merenda M., Felini C., Della Corte F. G. (2014). An autonomous and energy efficient smart sensor platform. 13th IEEE SENSORS Conference, pp. 1208-1211.

Microchip. Datasheet device: ATSAMD20E17. Available: 

Oregon Embedded. Available:   

Pan P., Wu S., Xiao Y., Liu G. (2015). A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew & Sust En Rev., Vol. 48, pp. 624–634. 

Papagiannakis A. T., Dessouky S., Montoya A., Roshani H. (2016). Energy harvesting from roadways. Presented at SEIT16 Annual Meeting. 

Perles A., Pérez-Marín E., Mercado R., Segrelles J. D., Blanquer I., Zarzo M., Garcia-Diego F. J. (2018). An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Fut. Gen. Com. Sy., Vol. 81, pp. 566–581. 

Pop M. D., Proștean O. (2018). A comparison between smart city approaches in road traffic management. Pr Soc & Beh Sc., Vol. 238, pp. 29–36. 

Praticò F. G., Della Corte F. G., Merenda M. (2017). Self-powered sensors for road pavements. Presented at CEW16 Annual Meeting. 

Praticò F. G., Moro A., Ammendola R. (2009). Factors affecting variance and bias of non-nuclear density gauges for PEM and DGFC. The Baltic J Road & Brid. Eng., Vol. 4, No. 3, pp. 99–107. 


Saadon S., Sideka O. (2015). Micro-electro-mechanical system (MEMS)-based piezoelectric energy harvester for ambient vibrations. Proc Soc & Beh Sc., Vol. 195, pp. 2353–2362. 

Silva D. (2016). World’s first solar road opens in Normandy, France. NBC NEWS. Available:   

Sinha R. S., Wei Y., Hwang S. H. (2017). A survey on LPWA technology: LoRa and NB-IoT. ICT Expr., Vol. 3, No. 1, pp. 14–21. 

SODA. Available:   

STMicroelectronics. Datasheet device: LSM6DS3. Available:  

Wang H., Jasim A., Chena X. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review.  Appl En., Vol. 212, pp. 1083–1094. 

Xiang B., Cao X., Yuan Y., Suna L., Wu H., Haghighat F. (2018). A novel hybrid energy system combined with solar-road and soil-regenerator: Dynamic model and operational performance. En Conv & Man., Vol. 156, pp. 376–387. 

Xiong H., Wang L. (2016). Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl En., Vol. 174, pp. 101–107. 

Xu X., Cao D., Yang H., He M. (2017). Application of piezoelectric transducer in energy harvesting in pavement. Int J Pav Res & Tech. 

Yang H., Wang L., Zhou B., Wei Y., Zhao Q. (2018). A preliminary study on the highway piezoelectric power supply system. Int J Pav Res & Tech., Vol. 11, pp. 168–175.

Youssef A. M. (2018). Operations of electric vehicle traction system. Mathematical Modelling of Engineering Problems, Vol. 5, No. 2, pp. 51-57.    

Zito F., Aquilino F., Fragomeni L., Merenda M., Della Corte F. G. (2010) CMOS wireless temperature sensor with integrated radiating element. Sensors and Actuators, A: Physical, Vol. 158, No. 2, pp. 169-175.