A ion beam analysis platform at ARRONAX. Study of the moist influence on the samples

A ion beam analysis platform at ARRONAX. Study of the moist influence on the samples

Alexandre Subercaze Arnaud Guertin Ferid Haddad Mostafa Hazim Liliane Jean-Soro Charbel Koumeir Vincent Métivier Nathalie Michel Catherine Neel Ahmed Rahmani Noël Servagent 

SUBATECH, IN2P3-CNRS, Université de Nantes, IMTA 4 rue Alfred Kastler,

44307, Nantes, France

GIP ARRONAX, 1 rue Aronnax, 44817 Saint Herblain, France

IFFSTAR – NANTES, Route de Bouaye, CS4, 44344 Bougenais, France

CEREMA, 8-10 rue Bernard Palissy, 63017 Clermont-Ferrand, France

Corresponding Author Email: 
Subercaze@subatech.in2p3.fr, Koumeir@arronax-nantes.fr, Liliane.jean-soro@ifsttar.fr, Catherine.neel@cerema.fr
31 December 2016
| Citation

Quantification of soil pollution with methods based on X-ray detection like X-Ray Fluorescence (XRF) suffers of multiple bias (moisture, surface state) especially when it's used for in-situ analysis using portable-XRF. In order to study the effect of moisture on the results of an analysis performed using X-Ray, we have performed studies using high energy PIXE/PIGE at ARRONAX. Samples were made of sand of different types. High energy PIXE/PIGE allows us to avoid bias from surface state and to focus on moisture effect. It also allows to assess the chemical composition of the sample. Results show a different behavior for each element present in volcanic sand. 


Ion beam analysis, High energy PIXE/PIGE, P-XRF

1. Introduction
2. Matériels et méthodes
3. Résultats et discussions
4. Conclusion

Le cyclotron ARRONAX est un projet soutenu par le conseil régional des Pays de la Loire et financé par les collectivités locales, l’état franà§ais et l’Union Européenne. Ce travail a été en partie financé par l’ANR dans le cadre de l’Equipex Arronax Plus no ANR-11-EQPX-0004 du programme "Investissements d’Avenir", et par le CPER 2007-2013 (opération "matériaux"), incluant des fonds FEDER.


Cipolla S. J. (2011). ISICS2011, an updated version of ISICS : A program for calculation K-,L-,and M-shell cross sections fromp PWBA and ECPSSR theories using a personnal computer. Computer Physics Communications, vol. 182.

Climent-Font A. (2008). Quantification of sodium in ancient roman glasses with ion beam analysis. Nuclear Instruments and Methods in Physics Research B, vol. 266.

Dran J. (2004). Ion beam analysis of art works : 14 years of use in the louvre. Nuclear Instruments and Methods in Physics Research B, vol. 211-220.

Ge L. (2001). Influence of and correction for moisture in rocks,soils and sediments on in situ XRF analysis. Journal of Hazardous Materials, vol. 83.

Hurkamp K. (2009). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable x-ray fluorescence (fpxrf) analysis. Geomorphology, vol. 110.

Kalnicky D. J. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, vol. 83.

Ogburn D. (2013). Evaluating effects of chemical weathering and surface contamination on the in situ provenance analysis of building stones in cuzco region of peru with portable XRF. Journal of Archaelogical Science, vol. 40. 

Panissian S. (1974). Atomic Data and Nucl.Data.

Parsons C. (2013). Quantification of trace arsenic in soils by field-portable X-Ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. Journal of Hazardous Materials, vol. 262.

Radu T. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, vol. 171.

Ragheb D. (2014). Development of a PIXE method at high energy with the arronax cyclotron. Journal of Radioanalytical and Nuclear Chemistry, vol. 301. 

Scientific data base. (s. d.). http://www.nist.gov.

Smit Z. (2013). Analysis of glass from the post-roman settlement tonovcoc grad by PIXE-PIGE and LA-ICP-MS. Nuclear Instruments and Methods in Physics Research B, vol. 311.