Multipoint holographic vibrometer. Design, limits and applications

Multipoint holographic vibrometer. Design, limits and applications

Julien Poittevin Pascal Picart François Gautier Charles Pézerat 

Université du Maine, LAUM UMR CNR 6613, Le Mans, France

Corresponding Author Email: 
julien.poittevin@univ-lemans.fr
Page: 
79-119
|
DOI: 
https://doi.org/10.3166/I2M.15.1-2.79-119
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

In the vibro-acoustics field, Laser Doppler Velocimetry (LDV) is the most used tool for investigating dynamic measurements. The main drawback of LDV is that it can provide dynamic data at only a particular location of the inspected surface. Scanning techniques are an alternative approach to get full-filed measurement, but the object of interest has to be under a perfectly controlled excitation. In order to simultaneously obtain a collection of data points at the surface of the vibrating object, we propose an approach relater to multipoint vibrometry, which is based on very high-speed digital holography. The measurement system was designed according to a simulation based design, and this establishes rules for the experimental optimization. The method is experimentally validated and provides 5916 simultaneous measurement points at 50 kHz, which is the best performance of the current state of the art. Application of the method to the interaction between an acoustic wave and a two-dimensional acoustic black hole is described. 

Keywords: 

digital holography, phase measurement, noise in imaging systems, interferometric imaging, image reconstruction technique, vibration analysis.

1. Introduction
2. Principe général de simulation de l’holographie optique ultra-rapide
3. Dimensionnements et limites
4. Validations expérimentales
5. Application à l’étude du Trou Noir Acoustique
6. Conclusion
Remerciements

Cette étude fait partie du programme de la chaire VIBROLEG (Vibroacoustique des structures légères) soutenu par l’IRT Jules Verne (Institut français de recherche en technologies de fabrications avancées pour les structures hybrides composites et métalliques). Les auteurs tiennent à associer les partenaires industriels et académiques de ce projet; respectivement Airbus, Alstom Power, Bureau Veritas, le CETIM, Daher, DCNS Research, STX et Université du Maine.

  References

Aguayo D. D., Mendoza Santoyo F., Torre-I M. H. De la, Salas-Araiza M. D., Caloca-Mendez C., Gutierrez Hernandez D. A. (2010). Insect wing deformation measurements using high speed digital holographic interferometry. Optics Express, vol. 18, no 6, p. 5661–5667.

Aklouche O., Pelat A., Maugeais S., Gautier F. (2015). Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate. Journal of Sound and Vibration (soumis).

Alexeenko I., Gusev M., Gurevich V. (2009). Separate recording of rationally related vibration frequencies using digital stroboscopic holographic interferometry. Applied Optics, vol. 48, no 18, p. 3475–3480.

Anderson D. J., Valera J. D., Jones J. D. C. (1993). Electronic speckle pattern interferometry using diode lase stroboscopic illumination. Measurement Science and Technology, vol. 4, no 9, p. 982.

Bertling K., Perchoux J., Taimre T., Malkin R., Robert D., Raki´c A. D. et al. (2014). Imaging of acoustic fields using optical feedback interferometry. Optics express, vol. 22, no 24, p. 30346–30356.

Borza D. N. (2004). High-resolution time-average electronic holography for vibration measurement. Optics and lasers in engineering, vol. 41, no 3, p. 515–527.

Castellini P., Revel G., Tomasini E. (1998). Laser doppler vibrometry: a review of advances and applications. The Shock and vibration digest, vol. 30, no 6, p. 443–456.

Chambard J., Chalvidan V., Carniel X., Pascal J. (2002). Pulsed tv-holography recording for vibration analysis applications. Optics and lasers in engineering, vol. 38, no 3, p. 131–143.

Chebbour A., Gharbi T., Tribillon G. (2001). Laser-diode interferometric heterodyne vibrometer: application to linear motor control. Applied optics, vol. 40, no 31, p. 5610–5614.

Chijioke A., Lawall J. (2008). Laser doppler vibrometer employing active frequency feedback. Applied optics, vol. 47, no 27, p. 4952–4958.

Connelly M. J., Szecówka P. M., Jallapuram R., Martin S., Toal V., Whelan M. P. (2008). Multipoint laser doppler vibrometry using holographic optical elements and a cmos digital camera. Optics Letters, vol. 33, no 4, p. 330–332.

Cuenca J. (2009). Wave models for the flexural vibrations of thin plates: model of the vibrations of polygonal plates by the image source method, vibration damping using the acoustic black hole effect. Thèse de doctorat non publiée, Université du Maine, Le Mans, France.

Dainty J. C. (1975). Laser speckle and related phenomena. Applied Physics, vol. 9, p. 298.

De Greef D., Soons J., Dirckx J. J. (2014). Digital stroboscopic holography setup for deformation measurement at both quasi-static and acoustic frequencies. International Journal of Optomechatronics, vol. 8, no 4, p. 275–291.

Demoli N., Vukicevic D. (2004). Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry. Optics Letters, vol. 29, no 20, p. 2423–2425.

Denis V. (2014). Vibration damping in beams using the acoustic black hole effect. Thèse de doctorat non publiée, Université du Maine, Le Mans, France.

Denis V., Poittevin J., Pelat A., Elie B., Gautier F. (2013). Reflexion of flexural waves at the end of a tapered beam of quadratic profile covered with a thin viscoelastic layer. In Proceedings of meetings on acoustics, vol. 19, p. 065019.

Donati S., Norgia M., Giuliani G. (2006). Self-mixing differential vibrometer based on electronic channel subtraction. Applied optics, vol. 45, no 28, p. 7264–7268.

Doval Á. F., Trillo C., Cernadas D., Dorrío B. V., López C., Fernández J. L. et al. (2000). Measuring amplitude and phase of vibration with double-exposure stroboscopic tv holography. In Interferometry in speckle light, p. 281–288. Springer.

Drain L. E. (1980). The laser doppler techniques (vol. 1). Chichester, Sussex, England and New York, Wiley-Interscience.

Ellingsrud S., Løkberg O. (1993). Full field amplitude and phase measurement of loudspeakers by using tv-holography and digital image processing. Journal of sound and vibration, vol. 168, no 2, p. 193–208.

Fu Y., Guo M., Phua P. B. (2010). Spatially encoded multibeam laser doppler vibrometry using a single photodetector. Optics Letters, vol. 35, no 9, p. 1356–1358.

Fu Y., Guo M., Phua P. B. (2011). Multipoint laser doppler vibrometry with single detector: principles, implementations, and signal analyses. Applied Optics, vol. 50, no 10, p. 1280–1288.

Fu Y., Pedrini G., Osten W. (2007). Vibration measurement by temporal fourier analyses of a digital hologram sequence. Applied Optics, vol. 46, no 23, p. 5719–5727.

Gautier F., Cuenca J., Krylov V., Simon L. (2008). Experimental investigation of the acoustic black hole effect for vibration damping in elliptical plates. Journal of the Acoustical Society of America, vol. 123, no 5, p. 3318.

Gross M., Atlan M. (2007). Digital holography with ultimate sensitivity. Optics Letters, vol. 32, no 8, p. 909–911.

Gross M., Atlan M., Absil E. (2008). Noise and aliases in off-axis and phase-shifting holography. Applied Optics, vol. 47, no 11, p. 1757–1766.

Guyader J.-L. (2002). Vibrations des milieux continus. Hermès Science.

Halkon B. J., Rothberg S. (2003). Vibration measurements using continuous scanning laser doppler vibrometry: theoretical velocity sensitivity analysis with applications. Measurement science and technology, vol. 14, no 3, p. 382.

Hazell C., Liem S. (1973). Vibration analysis of plates by real-time stroboscopic holography. Experimental Mechanics, vol. 13, no 8, p. 339–344.

Huntley J. M., Kaufmann G. H., Kerr D. (1999). Phase-shifted dynamic speckle pattern interferometry at 1 khz. Applied Optics, vol. 38, no 31, p. 6556–6563.

Joud F., Laloë F., Atlan M., Hare J., Gross M. (2009a). Imaging a vibrating object by sideband digital holography. Optics Express, vol. 17, no 4, p. 2774–2779.

Joud F., Verpillat F., Laloë F., Atlan M., Hare J., Gross M. (2009b). Fringe-free holographic measurements of large-amplitude vibrations. Optics Letters, no 23, p. 3698–3700.

Karray M., Slangen P., Picart P. (2012). Comparison between digital fresnel holography and digital image-plane holography: the role of the imaging aperture. Experimental mechanics, vol. 52, no 9, p. 1275–1286.

Kilpatrick J. M., Moore A. J., Barton J. S., Jones J. D., Reeves M., Buckberry C. (2000). Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry. Optics Letters, vol. 25, no 15, p. 1068–1070.

Kreis T. (1996). Holographic interferometry: principles and methods. In International symposium on laser applications in precision measurements held, balatonfüred, /hungary, vol. 2, p. 323.

Krylov V., Tilman F. (2004). Acoustic black holes for flexural waves as effective vibration dampers. Journal of Sound and Vibration, vol. 274, no 3, p. 605–619.

Leclercq M., Karray M., Isnard V., Gautier F., Picart P. (2013). Evaluation of surface acoustic waves on the human skin using quasi-time-averaged digital fresnel holograms. Applied Optics, vol. 52, no 1, p. A136–A146.

Leissa A. (1969). Vibration of plates. Rapport technique. DTIC Document.

Lesaffre M., Verrier N., Gross M. (2013). Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise. Applied Optics, vol. 52, no 1, p. A81–A91.

Leval J., Picart P., Boileau J., Pascal J. (2005). Full-field vibrometry with digital fresnel holography. Applied Optics, vol. 44, no 27, p. 5763–5772.

Li S., Mohan K. D., Sanders W. W., Oldenburg A. L. (2011). Toward soft-tissue elastography using digital holography to monitor surface acoustic waves. Journal of biomedical optics, vol. 16, no 11, p. 116005–1160057.

Li Y., Meersman S., Baets R. (2011). Realization of fiber-based laser doppler vibrometer with serrodyne frequency shifting. Applied optics, vol. 50, no 17, p. 2809–2814.

Lokberg O., Hogmoen K. (1976). Use of modulated reference wave in electronic speckle pattern interferometry. Journal of Physics E: Scientific Instruments, vol. 9, no 10, p. 847. 

MacPherson W. N., Reeves M., Towers D., Moore A., Jones J. D., Dale M. et al. (2007). Multipoint laser vibrometer for modal analysis. Applied Optics, vol. 46, no 16, p. 3126–3132.

Magnani A., Pesatori A., Norgia M. (2012). Self-mixing vibrometer with real-time digital signal elaboration. Applied Optics, vol. 51, no 21, p. 5318–5325.

Mills G. A., Yamaguchi I. (2005). Effects of quantization in phase-shifting digital holography. Applied Optics, vol. 44, no 7, p. 1216–1225.

Mironov M. (1988). Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics Acoustics-USSR, vol. 34, no 3, p. 318–319.

Mohan K., Sanders W., Oldenburg A. (2012). Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves. In Digital holography and three-dimensional imaging, p. DSu4C–5.

Monchalin J. (1993). Progress towards the application of laser-ultrasonics in industry. In Review of progress in quantitative nondestructive evaluation, vol. 13. Plenum Press.

Moore A. J., Hand D. P., Barton J. S., Jones J. D. (1999). Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera. Applied Optics, vol. 38, no 7, p. 1159–1162.

Moore T., Kaplon J., McDowall G., Martin K. (2002). Vibrational modes of trumpet bells. Journal of sound and vibration, vol. 254, no 4, p. 777–786.

Mundt J., Kreis T. (2010). Digital holographic recording and reconstruction of large scale objects for metrology and display. Optical Engineering, vol. 49, no 12, p. 125801–125801.

O’Malley P., Woods T., Judge J., Vignola J. (2009). Five-axis scanning laser vibrometry for three-dimensional measurements of non-planar surfaces. Measurement Science and Technology, vol. 20, no 11, p. 115901.

Pandey N., Hennelly B. (2011). Quantization noise and its reduction in lensless fourier digital holography. Applied Optics, vol. 50, no 7, p. B58–B70.

Pascal J.-C., Carniel X., Chalvidan V., Smigielski P. (1996). Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry. Optics and Lasers in Engineering, vol. 25, no 4, p. 343–360.

Pedrini G., Froening P., Fessler H., Tiziani H. (1998). Transient vibration measurements using multi-pulse digital holography. Optics & Laser Technology, vol. 29, no 8, p. 505–511.

Pedrini G., Osten W., Gusev M. E. (2006). High-speed digital holographic interferometry for vibration measurement. Applied Optics, vol. 45, no 15, p. 3456–3462.

Pedrini G., Schedin S., Tiziani H. (2002). Pulsed digital holography combined with laser vibrometry for 3d measurements of vibrating objects. Optics and lasers in engineering, vol. 38, no 3, p. 117–129.

Pedrini G., Tiziani H. (1995). Digital double-pulse holographic interferometry using fresnel and image plane holograms. Measurement, vol. 15, no 4, p. 251–260.

Pedrini G., Tiziani H., Zou Y. (1997). Digital double pulse-tv-holography. Optics and lasers in Engineering, vol. 26, no 2, p. 199–219.

Pedrini G., Zou Y., Tiziani H. (1995). Digital double-pulsed holographic interferometry for vibration analysis. Journal of Modern Optics, vol. 42, no 2, p. 367–374.

Pérez-López C., Torre-Ibarra M. H. De la, Mendoza Santoyo F. (2006). Very high speed cw digital holographic interferometry. Optics Express, vol. 14, no 21, p. 9709–9715.

Picart P., Leval J. (2008). General theoretical formulation of image formation in digital fresnel holography. Journal of the Optical Society of America, vol. 25, no 7, p. 1744–1761.

Picart P., Leval J., Mounier D., Gougeon S. (2003). Time-averaged digital holography. Optics Letters, vol. 28, no 20, p. 1900–1902.

Picart P., Leval J., Piquet F., Boileau J., Guimezanes T., Dalmont J. (2007). Tracking high amplitude auto-oscillations with digital fresnel holograms. Optics Express, vol. 15, no 13, p. 8263–8274.

Picart P., Mercier R., Lamare M., Breteau J.-M. (2001). A simple method for measuring the random variation of an interferometer. Measurement Science and Technology, vol. 12, no 8, p. 1311.

Picart P., Tankam P., Song Q. (2011). Experimental and theoretical investigation of the pixel saturation effect in digital holography. Journal of the Optical Society of America, vol. 28, no 6, p. 1262–1275.

Pinard F., Laine B., Vach H. (2003). Musical quality assessment of clarinet reeds using optical holography. The Journal of the Acoustical Society of America, vol. 113, no 3, p. 1736–1742.

Poittevin J., Picart P., Faure C., Gautier F., Pézerat C. (2015). Multi-point vibrometer based on high-speed digital in-line holography. Applied Optics, vol. 54, no 11, p. 3185–3196.

Poittevin J., Picart P., Gautier F., Pezerat C. (2015). Quality assessment of combined quantization-shot-noise-induced decorrelation noise in high-speed digital holographic metrology. Optics express, vol. 23, no 24, p. 30917–30932.

Powell R., Stetson K. (1965). Interferometric vibration analysis by wavefront reconstruction. Journal of the Optical Society of America, vol. 55, no 12, p. 1593–1597.

Roos P., Stephens M.,Wieman C. (1996). Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode. Applied optics, vol. 35, no 34, p. 6754–6761.

Samson B., Verpillat F., Gross M., Atlan M. (2011). Video-rate laser doppler vibrometry by heterodyne holography. Optics Letters, vol. 36, no 8, p. 1449–1451.

Schnars U., Kreis T., Ju W. et al. (1996). Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum. Optical Engineering, vol. 35, no 4, p. 977–982.

Scruby C., Drain L. (1990). Laser ultrasonics techniques and applications. CRC Press.

Shang J., He Y., Liu D., Zang H., Chen W. (2009). Laser doppler vibrometer for real-time speech-signal acquirement. Chinese Optics Letters, vol. 7, no 8, p. 732–733.

Sim C., Chau F., Toh S. (1995). Vibration analysis and non-destructive testing with real-time shearography. Optics & Laser Technology, vol. 27, no 1, p. 45–49.

Solís S. M., Santoyo F. M., Hernández-Montes M. (2012). 3d displacement measurements of the tympanic membrane with digital holographic interferometry. Optics Express, vol. 20, no 5, p. 5613–5621.

Stetson K., Powell R. (1965). Interferometric hologram evaluation and real-time vibration analysis of diffuse objects. Journal of the Optical Society of America, vol. 55, no 12, p. 1694–1695.

Sun K., Yuan L., Shen Z., Xu Z., Zhu Q., Ni X. et al. (2014). Scanning laser-line source technique for nondestructive evaluation of cracks in human teeth. Applied Optics, vol. 53, no 11, p. 2366–2374.

Trillo C., Doval A. F., Cernadas D., López O., López J. C., Dorrío B. V. et al. (2003). Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed tv holography and a two-stage spatial fourier transform method. Measurement Science and Technology, vol. 14, no 12, p. 2127–2134.

Trillo C., Doval A. F., Mendoza-Santoyo F., Pérez-López C., La Torre-Ibarra M. de, Deán J. L. (2009). Multimode vibration analysis with high-speed tv holography and a spatiotemporal 3d fourier transform method. Optics Express, vol. 17, no 20, p. 18014–18025.

Vanlanduit S., Guillaume P., Cauberghe B., Verboven P. (2003). An automatic position calibration method for the scanning laser doppler vibrometer. Measurement Science and Technology, vol. 14, no 8, p. 1469.

Verpillat F., Joud F., Atlan M., Gross M. (2010). Digital holography at shot noise level. Journal of Display Technology, vol. 6, no 10, p. 455–464.

Zabit U., Atashkhooei R., Bosch T., Royo S., Bony F., Rakic A. (2010). Adaptive self-mixing vibrometer based on a liquid lens. Optics letters, vol. 35, no 8, p. 1278–1280.

Zabit U., Bernal O. D., Bosch T., Bony F. (2011). Mems accelerometer embedded in a selfmixing displacement sensor for parasitic vibration compensation. Optics letters, vol. 36, no 5, p. 612–614.

Zhang F., Valera J. D., Yamaguchi I., Yokota M., Mills G. (2004). Vibration analysis by phase shifting digital holography. Optical Review, vol. 11, no 5, p. 297–299.