Continuous Mappings and Fixed-Point Theorems in Probabilistic Normed Space

Continuous Mappings and Fixed-Point Theorems in Probabilistic Normed Space

Gaoxun ZhangHonglei Zhang 

School of Science, Southwest University of Science and Technology, Mianyang 621010, China

Research Center of Local Government Governance, Yangtze Normal University, Chongqing 408100, China

Corresponding Author Email: 
zhanggaoxun002@163.com, 2279796418@qq.com
Page: 
360-372
|
DOI: 
https://doi.org/10.18280/ama_a.540217
Received: 
25 May 2017
| |
Accepted: 
10 June 2017
| | Citation

OPEN ACCESS

Abstract: 

The notion of probabilistic normed space has been redefined by C. Alsina, B. Schweizer and A. Sklar [2]. But the results about the continuous operator in this space are not many. In this paper, we study B-contractions, H-contractions and strongly ε-continuous mappings and their respective relation to the strongly continuous mappings, and give some fixed-point theorems in this space.

Keywords: 

Probabilistic Normed (PN) Space, Fixed-point theorem, Strongly ε-continuous.

1. Introduction
2. Main Results
Acknowledgment

This work is supported by the Doctoral Program Research Foundation of Southwest University of Science and Technology (15zx7139).

  References

1. A. N. Šerstnev, On the motion of a random normed space, 1963, Dokl. Akad. Nauk. SSSR., no. 149, pp. 280-283.

2. C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, 1993, Aequationes Math., vol. 46, pp. 91-98. 

3. C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, 1997, J. Math. Anal. Appl., vol. 208, pp. 446-452. 

4. B. Lafuerza Guillén, C. Sempi, G. Zhang, M. Zhang, Countable products of probabilistic normed spaces, 2009, Nonlinear Analysis., vol. 71, pp. 4405-4414. 

5. B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Completion of probabilistic normed spaces, 1995, Internat. J. Math. and Math. Sci., vol. 18, no.4, pp. 649-652. 

6. B. Lafuerza Guillen, J.A. Rodríguez Lallena, C. Sempi, A study of boundedness in probabilistic normed spaces, 1999, J. Math. Anal. Appl., vol. 232, pp. 183-196. 

7. B. Schweizer, A. Sklar, Probabilistic metric spaces, 1983, New York, Elsevier North-Holland.

8. G. Zhang, M. Zhang, On the normability of generalized Šerstnev PN spaces, 2006, J. Math. Anal. Appl., vol. 340, pp.1000-1011. 

9. M. Rafi, M.S.M. Noorani, Approximate fixed-point theorem in probabilistic normed (Metric) spaces, 2006, Proceedings of the 2end IMT-GT Regional Conference on Mathematics, Statistics and Applicatons Universiti Sains, 2006, Malaysia, Penang, pp. 13-15. 

10. D. Guo, Nonlinear functional analysis, 1985, Shandong Sci. and Tech. Press.