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Abstract  

The notion of probabilistic normed space has been redefined by C. Alsina, B. Schweizer and 

A. Sklar [2]. But the results about the continuous operator in this space are not many. In this paper, 

we study B-contractions, H-contractions and strongly ε-continuous mappings and their respective 

relation to the strongly continuous mappings, and give some fixed-point theorems in this space. 

 

Key words 

Probabilistic Normed (PN) Space, Fixed-point theorem, Strongly ε-continuous. 

 

1. Introduction 

In 1963, Šerstnev [1] introduced Probabilistic Normed spaces, whose definition was 

generalized by C. Alsina, B. Schweizer and A. Sklar [2] in 1993. In this paper we adopt this 

generalized definition and the notations and concepts used are those of [2-6].  

A distribution function (briefly, d.f.) is a function F from the extended real line [ ]R = −+  

into the unit interval I=[0,1] that is left continuous nondecreasing and satisfies ( ) 0F − =  and 

( ) 1F  = . The set of all distribution functions will be denoted by   and the subset of those 

distribution functions called positive distribution functions such that F(0)=0, by 
+ . By setting 
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F G  whenever ( ) ( )F x G x  for all x in R , a natural ordering in   and in +  has been 

introduced. The maximal element for +  in this order is the distribution function given by  

0

0 0
( )

1 0

x
x

x


 
= 

  
                                                                                                                           (1) 

 

A triangle function is a binary operation on + , namely a function   : 
+ + +  →   that is 

associative, commutative and nondecreasing, and which has ε0 as a unit, that is, for all F, G, H
+

, we have:  

 

( ( ) ) ( ( )) ( ) ( )F G H F G H F G G F       =     =    

0( ) ( ) ( )F H G H wheneverF G F F          = 
 

 

Continuity of a triangle function means continuity with respect to the topology of weak 

convergence in 
+    

Typical continuous triangle functions are operations T  and 
T

  , which are respectively given 

by  

 

( )( ) sup ( ( ) ( ))T
s t x

F G x T F s G t
+ =

 =                                                                                                     (2) 

 

and 

 

( )( ) inf ( ( ) ( ))
T s t x

F G x T F s G t 



+ =
 =                                                                                                   (3) 

 

for all F, G in +  and all x in R  [7, Sections7.2 and 7.3], and T is a continuous t-norm, i.e., a 

continuous binary operation on [0,1] which is associative, commutative, nondecreasing and has 1 

as identity; T* is a continuous t-conorm, namely a continuous binary operation on [0,1] that is 

related to continuous t-norm through  

 

( ) 1 (1 1 )T x y T x y  = − −  −                                                                                                            (4) 
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The most important t-norms are function W, Prod and M which are defined, respectively, by  

( ) { 1 0} ( ) ( ) { }W a b max a b Prod a b ab M a b min a b = + −    =   =    

Throughout this paper, we always assume that the t-norm T satisfies  

(0 1)

sup ( ) 1
t

T t t
 

 = 
 

Definition 1.1.[7] A probabilistic metric (briefly, PM) space is a triple ( S , F ,  ), where S  

is a nonempty set,   is a triangle function, and F  is a mapping form S S  into +  such that, if 

pqF  denotes the value of F  at the pair ( )p q , the following conditions hold for all p q  and r  in 

S :  

(PM1) 0pqF =  if and only if p q= ; (  is the null vector in S )  

(PM2) pq qpF F= ;  

(PM2) ( )pr pq qrF F F  .  

Definition 1.2.[2] A probabilistic normed space is a quadruple (V , , , 
), where V is a real 

vector space,   and  
 are continuous triangle functions and   is a mapping from V into +  such 

that for all p, q in V, the following conditions hold:  

(PN1) 0p =  if, and only if, p = ; (θ is the null vector in V)  

(PN2) p V  , p p − =  ;  

(PN3) ( )p q p q   +   ;  

(PN4) 
(1 )( )p ap a p   

−   for all a  in [0,1].  

A Menger PN space under T is a PN space (V , , , 
), denoted by (V, v, T), in which T =  

and 
T

  

 =  for some continuous t-norm T and its t-conorm T*.  

The PN space is called a Serstnev space if the inequality (PN4) is replaced by the equality 

(1 )( )p M ap a p    −=  , and, as a consequence, a condition stronger than (PN2) holds, namely 

( ) ( )x
p px  

 
=   for all 0p V     and x R , i.e., the (Š) condition (see [2]). The pair (V , ) is 

said to be a Probabilistic Seminormed Space (briefly, PSN space) if  : V
+→   satisfies (PN1) 

and (PN2).   

Let { 1}n np 

=  be a sequence of points in V. A is a sequence that converges to p in V, if for each 

0t  , there is a positive integer N such that ( ) 1
np p t t −  −  for n N , and is a Cauchy sequence, 
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if for each 0t   there is a positive integer N such that ( ) 1
n mp p t t −  −  for all n m N  . A PN space 

is complete if every Cauchy sequence converges.  

Definition 1.3.[7] A PSN space (V , )  is said to be equilateral if there is a d.f. F +  

different from 0  and from + , such that, for every p  , p F = . Therefore, every equilateral 

PSN space (V , ) is a PN space under M  = = , where the triangle function is defined for 

G H +   by  

 

( )( ) sup { ( ) ( )}M
s t x

G H x min G s H t
+ =

 =    

 

An equilateral PN space will be denoted by ( )V F M  .  

Definition 1.4.[8] Let (V , , , 
) be a PN space, for p V  and (0 1)   . We give the 

following two conditions:  

( 1Z )   For all (0 1)a  , there exists a [1 [    such that  

( ) 1 ( ) 1p ap

a
implies a     


 −  −   

( 2Z )   For all (0 1)a  , let 
1 1 4 (1 )

0 2
( )

a a
a


 

+ − −
 = , then  

0

( ) 1 ( ) 1
( )

p ap

a
implies a

a
     

 
 −  − 


 

Definition 1.5.[7] There is a natural topology in the PN space (V , , , 
), and it is called 

strongly topology, defined by the following neighborhoods: ( ) { ( ) 1 }p q pN q V   −=    −   

where λ>0. The strongly neighborhood system for V is the union p V pN , where 

{ ( ) 0}p pN N  =     In the strongly topology, the closure ( )pN   of ( )pN   is defined by  

( ) ( ) ( )p p pN N N  = where ( )pN   is the set of limit points of all convergent sequences 

in ( )pN    From [5, Theorem 3], we know every PN space (V, v,  , 
) has a completion. C.Alsina, 

B.Schweizer and A. Sklar [3, Theorem 1] have proved that   is a uniformly continuous mapping 

from V into 
+    

Now, we give two different definitions of the contractions in PN space.  
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Definition 1.6.[7](i).A mapping (f V    , , 
) →  (U ,  , , 

) is a B-contraction, if 

there is a constant (0 1)k    such that for all p and q in V, and all x>0,  

 

( ) ( ) ( ) ( )f p f q p qkx x − −                                                                                                                    (5) 

 

(ii). A mapping (f V    , , 
) →  (U ,  , , 

) is an H-contraction, if there is a constant 

(0 1)k    such that for p and q in V, and all x>0,  

 

( ) ( )( ) 1 ( ) 1p q f p f qx x implies kx kx − − −  −                                                                                  (6) 

 

Remark 1.1. If f is a linear operator, for all p V , we have that (1.5) is equivalent to 

( )( ) ( )f p pkx x   and (1.6) is equivalent to that  

( )( ) 1 ( ) 1p f px x implies kx kx  −  −   

Definition 1.7. [6] Given a nonempty set A  in a PN space (V , , , 
), the probabilistic 

radius AR  of A  is defined by  

 

( ) [0 [
( )

1

A

A

x x
R x

x

−   + 
= 

 = +
                                                                                                        (7) 

 

where ( )f x−  denotes the left limit of the function f at the point x and  

( ) inf{ ( ) }A px x p A =     

As a consequence of DEFINITION 1.7., we have p AR   for all p A    

Definition 1.8. [9] In a PN space (V , , , 
),  a mapping f V V →  is said to be strongly 

 -continuous ( 0)  , if for each p V , it admits a strong  -neighborhood ( )pN   such that  

( ( ))( ) 1
pf NR    − 

 

Lemma 1.9. [9] Suppose (V , , , 
) be a PN space and A V . If f A A →  is strongly 

 -continuous, then for each p A  and 0  , we have  

( ) ( ) 1f p   − 
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2. Main Results 

Definition 2.1. A mapping (f V    , , 
) →  (U ,  , , 

)  is strongly continuous, if for 

any 0  , there exists 0   such that  

 

( )( ) ( ) ( )p f pq N f q N                                                                                                            (8) 

where (V, v, τ, τ*) and ( )U        are PN spaces, and { }p q V \   .  

Theorem 2.1. In a PN space (V, v, τ, τ*) with W  , a strongly  -continuous mapping 

f V V →  is strongly continuous.  

Proof. Let 1 2   . In view of Definition 1.8, there exists 0   such that  
( ( ))( 2) 1 2

pf NR     −    

therefore 
( ) ( ( ))( ) ( 2) ( 2) 1 2

pp f q f Nq N R           −   i.e.,  

( )( ) 1 ( 2) 1 2p q f qimplies     −  −   −   From ( )pp N  , we have 

( ) ( ( ))( 2) ( 2) 1 2
pf p f NR        −    thus  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

( )( )

sup ( ( ) ( ))

( ( 2) ( 2))

(1 2 1 2)

1

f p f q f p f q

W f p f q

f p f q
s t

f p f q

W s t

W

W



     

   

 

   

 



−

+ =

 

 

= 

   

 −   − 

= −  

i.e., ( )( ) ( )f pf q N    So ( )( ) ( ) ( )p f pq N f q N       

Theorem 2.2. Let (V, v, τ, τ*) be a PN space, then  

(i). A B-contraction mapping is strongly continuous;  

(ii). an H-contraction mapping is strongly continuous.  

Proof. (i). Suppose (V, v, τ, τ*) be a PN space and f V V →  be B-contraction. According to 

Definition 1.6, there is a constant (0 1)k    such that for p and q in V, and x>0  

 

( ) ( ) ( ) ( )f p f q p qkx x − −                                                                                                                    (9) 

 

Therefore, let a>1, we have  

 

( ) ( ) ( ) ( )( ) ( ) ( )f p f q f p f q p qax kx x  − − −                                                                                           (10) 
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Let vp-q(x)>1-x we have  

 

( ) ( ) ( ) ( ) 1 1f p f q p qax x x ax − −  −  −                                                                                          (11) 

 

i.e., 

 

( )( ) ( ) ( )p f pq N x f q N ax                                                                                                        (12) 

 

So for ε>0, set a =   such that 

 

( )( ) ( ) ( )p f pq N f q N                                                                                                          (13) 

 

By Definition 2.1., we have that f is strongly continuous.  

(ii). Suppose (V, v, τ, τ*) be a PN space and f V V →  be H-contraction, and if ε>0, in view 

of Definition 1.6, there is a constant 0 (0 1)k    such that for p and q in V,  

 

0 0 ( ) ( )( ) 1 ( ) 1p q f p f qk k implies     − −  −   −                                                                        (14) 

 

i.e., 

 

0 ( )( ) ( ) ( )p f pq N k f q N                                                                                                      (15) 

 

So for ε>0, set 0k =   such that 

 

( )( ) ( ) ( )p f pq N f q N                                                                                                          (16) 

 

Basing on Definition 2.1., we have proven that f is strongly continuous.   

The following examples, Example 2.1. and 2.2., show that a B-contraction isn’t necessarily an 

H-contraction, an H-contraction isn’t necessarily a B-contraction, and a strongly continues 

mapping isn’t necessarily a B-contraction or an H-contraction.  
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Example 2.1. Let V  be a vector space and 0   = = , if (2 3)a  , p, q V  (p, q  ) and 

x R ,  

0 0

2
1 0

0 3
( ) ( )

1 2
2

3

1

p p

x

a
a x

x a
x x

x a a
a x

x

 

 

    

  
= = 

       

  = 

 

and if ( )( ) ( )( ) supmin( ( ) ( ))p q p q p q
s t x

x x s t       

+ =

 =  =   then (V, v, τ, τ*) and (V, μ, τ, τ*) are 

equilateral PN spaces by Definition 1.3. Now let I: (V, v, τ, τ*)→(V, μ, τ, τ*) be the identity operator, 

then I is not a B-contraction, but an H-contraction. In fact, for every (0 1)k   , x>a and p≠θ, 

2
( ) ( ) ( ) 1 ( )Ip Ip p pkx x x x

a
    = =  =   Hence I is not a B-contraction.  

Next we’ll prove that I is an H-contraction. Suppose ( ) 1p x x  − , where p  . This 

condition holds only if 1x  . In fact, if 1x  , then ( ) 0 1p x x =  − . For (2 3)a  , if 1 x a  , 

let 2
3

h = , then 22
3 3

ahx  , therefore 
1 1 2

( ) ( ) 1 1
3 3

Ip phx hx hx
a

 = =  = −  −  If x a let   2
3

h =

, then 2
3
ahx  , therefore 

2 2
( ) ( ) 1 1 1

2 3
Ip p

a a
hx hx hx

a
 = =  −  −  − Thus there is a constant 

2
3

h =  such that for all points p   in V ,and all 0x  , 

 

( ) 1 ( ) 1p Ipx x implies hx hx  −  −                                                                                            (17) 

 

i.e., I is an H-contraction. In view of Theorem 2.2. (ii), we have that I is strongly continuous.  

Example 2.2. Let V V R= = , 0 0 0  = = , if, for x>0, 0p   and 3
2

ka += , where (0 1)k   ,  

 

0 0 0 0

1 1
( ) 0 ( ) 0

2

1
1

2

p p

x x

a
x x a x x

a a

a x a
x

 


    


 

=    =    
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and if ( )( ) ( )( ) supmin( ( ) ( )))p q p q p q
s t x

x x s t       

+ =

 =  =   then ( R       ) and ( )R        are 

equilateral PN spaces by Definition 1.3. Now let I: ( ) ( )R R         →     be the identity 

operator, then I is not an H-contraction, but a B-contraction. In fact, for every (0 1)k   , we have 

that 3 3
2 2

( 2)ka +=     Let 1
a

x = , we have that 
1 1 1

( ) ( ) 1 1p px x
a a a

 = =  − = −   But,  

 

1 1 1
( ) ( ) ( ) ( ) 1 1Ip Ip Ip p

k
kx x kx

a a a a
    = = =  − = −   

Hence I is not an H-contraction. Meanwhile, for every p R  and x>0, there exists a constant 

2
0 3

k =  such that  

 

0

0 0

2 2 1
( ) ( ) ( ) ( ) 0 ( )

3 3 2

1

Ip Ip p p p

x

x x x
k x x a x

a

a x

    

 



= =  =    = 

     

 

i.e., I is a B-contraction. In view of Theorem 2.2.(ii), I is strongly continuous.  

Example 2.3. Let PN space (V, v, τ, τ*) and ( )V        satisfy Example 2.1, and I: 

( ) ( )V V         →     be the identity operator, then I is not strongly ε-continuous, but strongly 

continuous. In fact, according to Example 2.1., it is obvious that I is strongly continuous.  

Now we are going to prove that I is not strongly ε-continuous. Suppose I is strongly ε-

continuous. Let A V  be not empty. In view of Lemma 1.1., for each p A  and 0  , we have  

( ) 1Ip   − 
However, let 1

0 3
(0 )   , for each p A  and 0p  , we have  

0 0 0

1 1 2
( ) ( ) ( ) 1

3 3
Ip p p

a
     =  =   − Thus, there appears a contradiction. So, we have 

that I is not strongly ε-continuous.  

Lemma 2.1. [10] Let V be Banach space and D be a compact and convex subset of V. If 

f D D →  is a strongly continuous mapping, then f  has at least one fixed point on D.  

Not all PN spaces are Banach spaces; Lemma 2.2. shows that under some conditions, a PN 

space is a Banach space.  
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Lemma 2.2. [8] Let (V, v, τ, τ*) be a TV PN space and ( )N   be strong  -neighborhoods of 

 , where (0 1)   .  

(i) Suppose W  . If there is an ( )N   satisfying (
1Z ), then ( )V        is nomable.  

(ii) Suppose   , ( )Prod = . If there is an ( )N   satisfying ( 2Z ), then ( )V        is 

nomable.  

Theorem 2.3. Let A be a compact and convex subset of TV PN space ( )V        and 

f A A →  be a strongly continuous mapping.  

(i) Suppose W   and there is an ( )N   satisfying ( 1Z ), then f  has at least one fixed point 

on A .  

(ii) Suppose W   and there is an ( )N   satisfying ( 2Z ), then f   has at least one fixed point 

on A .  

Proof. In view of Lemma 2.1. and Lemma 2.2., it is obvious that Theorem 2.3. holds.   

Corollary 2.1. Let A  be a compact and convex subset of TV PN space (V, v, τ, τ*) and 

f A A →  be a B-contraction or an H-contraction mapping.  

(i) Suppose W   and there is an ( )N   satisfying ( 1Z ), then f has at least one fixed point 

on A.  

(ii) Suppose W   and there is an ( )N   satisfying ( 2Z ), then f has at least one fixed point 

on A.  

Proof. In view of Theorem 2.2., we have that f A A →  is a strongly continuous mapping on 

A . By Theorem 2.3., f has at least one fixed point on A. 

Corollary 2.2. Let A be a compact and convex subset of TV PN space (V, v, τ, τ*) and 

f A A →  be a strongly  -continuous mapping.  

(i) Suppose W   and there is an ( )N   satisfying ( 1Z ), then f has at least one fixed point 

on A .  

(ii) Suppose W   and there is an ( )N   satisfying ( 1Z ), then f has at least one fixed point 

on A .  

Proof. In view of Theorem 2.1., we have that f A A →  is a strongly continuous mapping on 

A . By Theorem 2.3., we have that f has at least one fixed point on A .  
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Theorem 2.4. Let A  be a compact and convex subset of PN space (V, v, τ, τ*), where (V, v, τ, 

τ*) is a Banach space. If f A A →  is a strongly continuous mapping, then f  has at least one fixed 

point on A .  

Proof. In view of Lemma 2.1., it is obvious that Theorem 2.4. holds.   

Let (V, v, τ, τ*) be a PN space and f V V →  be a single-valued self mapping. A point p V  

with the property ( ) 0f p p − =  is called a fixed point of f  on V  . Note that, for every { }p V   , 

if ( ) ( ) 1f p p t −   for all 0t   (see [12], Example 2.4.), then ( )f p p , i.e., f  has no fixed point 

on V . In such a situation a question arises about the existence of an approximate fixed point. The 

following is the definition of the approximate fixed point in PN space.  

Definition 2.2. [9] Suppose (V, v, τ, τ*)be a PN space and A V . We call p A  an  -fixed 

point of f A A → , if, there exists an 0   such that ( )sup ( ) 1f p p
t

t


 −


=  A self mapping 

f A A →  has approximate fixed point property (in short a.f.p.p.) if the function f possesses at 

least one ε-fixed point.  

Definition 2.3. A is bounded, if for every n∈N and for every p∈A, there is a k∈N such that 

(1 ) 1 1p k n n    −  .  

Lemma 2.3. [3] If     , then ap p     

Theorem 2.5. Suppose A be a bounded and convex subset of PN space (V, v, τ, τ*) with W 

, where(V, v, τ, τ*) is a Banach space. If the mapping f A A →  is strongly  -continuous, then f 

has at least one approximate fixed-point on A.  

Proof. Since f is an  -continuous on A, by Definition 1.8. and Lemma 1.1, we have that for 

every p A , ( )
0

sup ( ) 1f p


 


=  Let B  be a compact and convex subset of A, defined by 

(1 )B a A= −   where A  is a closure of A and (0<a<1) In view of Theorem 2.1., we have that f is 

strongly continuous. We can define a strongly continuous function g B B →  by  

( ) (1 ) ( )g p a f p p B= −   By Theorem 2.4., there is a 0p B  such that 0 0( )g p p= , which 

implies 0 0(1 ) ( )a f p p− =  . Whence 
0 0(1 ) ( ) 0a f p p − − =   Since 0 0 0 0 0( ) (1 ) ( ) ( )f p p a f p p af p− = − − +   

by (PN3) and Lemma 2.3., we have  
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0 0 0 0 0

0

0

( ) (1 ) ( ) ( )

0 ( )

( )

( )

( )

f p p a f p p af p

f p

f p

   

  



− − − 

= 

= 

 

 

By taking sup over 0<t<ε on both sides of the inequality, we have 
0 0 0( ) ( )

0 0

sup ( ) sup ( )f p p f p
t t

t t
 

 −
   

   

Because 
0p B A  , 

0( )
0

sup ( ) 1f p
t

t



 

=  So
0 0 0( ) ( )

0 0

sup ( ) sup ( ) 1f p p f p
t t

t t
 

 −
   

 =  According to 

Definition 2.2. p0 is an approximate fixed point of f, thus f has at least one ε-fixed-point on A.  
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