Continuous Mappings and Fixed-Point Theorems in Probabilistic Normed Space

*Gaoxun Zhang, **Honglei Zhang
*School of Science, Southwest University of Science and Technology, Mianyang 621010, China (Corresponding author: zhanggaoxun002@163.com)
**Research Center of Local Government Governance, Yangtze Normal University, Chongqing 408100, China (2279796418@qq.com)

Abstract

The notion of probabilistic normed space has been redefined by C. Alsina, B. Schweizer and A. Sklar [2]. But the results about the continuous operator in this space are not many. In this paper, we study B-contractions, H-contractions and strongly ε-continuous mappings and their respective relation to the strongly continuous mappings, and give some fixed-point theorems in this space.

Key words

Probabilistic Normed (PN) Space, Fixed-point theorem, Strongly ε-continuous.

1. Introduction

In 1963, Šerstnev [1] introduced Probabilistic Normed spaces, whose definition was generalized by C. Alsina, B. Schweizer and A. Sklar [2] in 1993. In this paper we adopt this generalized definition and the notations and concepts used are those of [2-6].

A distribution function (briefly, d.f.) is a function F from the extended real line $\bar{R}=[-\infty,+\infty]$ into the unit interval $\mathrm{I}=[0,1]$ that is left continuous nondecreasing and satisfies $F(-\infty)=0$ and $F(\infty)=1$. The set of all distribution functions will be denoted by Δ and the subset of those distribution functions called positive distribution functions such that $\mathrm{F}(0)=0$, by Δ^{+}. By setting
$F \leq G$ whenever $F(x) \leq G(x)$ for all x in \bar{R}, a natural ordering in Δ and in Δ^{+}has been introduced. The maximal element for Δ^{+}in this order is the distribution function given by $\varepsilon_{0}(x)=\left\{\begin{array}{l}0, x \leq 0 \\ 1, x>0 .\end{array}\right.$

A triangle function is a binary operation on Δ^{+}, namely a function $\tau: \Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$that is associative, commutative and nondecreasing, and which has ε_{0} as a unit, that is, for all $F, G, H \in \Delta^{+}$, we have:
$\tau(\tau(F, G), H)=\tau(F, \tau(G, H)), \tau(F, G)=\tau(G, F)$,
$\tau(F, H) \leq \tau(G, H)$, whenever $F \leq G, \tau\left(F, \varepsilon_{0}\right)=F$.

Continuity of a triangle function means continuity with respect to the topology of weak convergence in Δ^{+}.

Typical continuous triangle functions are operations τ_{T} and $\tau_{T^{*}}$, which are respectively given by
$\tau_{T}(F, G)(x)=\sup _{s+t=x} T(F(s), G(t))$,
and
$\tau_{T^{*}}(F, G)(x)=\inf _{s+t=x} T^{*}(F(s), G(t))$,
for all F, G in Δ^{+}and all x in \bar{R} [7, Sections7.2 and 7.3], and T is a continuous t-norm, i.e., a continuous binary operation on $[0,1]$ which is associative, commutative, nondecreasing and has 1 as identity; T^{*} is a continuous t-conorm, namely a continuous binary operation on $[0,1]$ that is related to continuous t-norm through

$$
\begin{equation*}
T^{*}(x, y)=1-T(1-x, 1-y) . \tag{4}
\end{equation*}
$$

The most important t-norms are function W, Prod and M which are defined, respectively, by $W(a, b)=\max \{a+b-1,0\}, \operatorname{Prod}(a, b)=a b, M(a, b)=\min \{a, b\}$.

Throughout this paper, we always assume that the t-norm T satisfies
$\sup _{t \in(0,1)} T(t, t)=1$.
Definition 1.1.[7] A probabilistic metric (briefly, PM) space is a triple (S, F, τ), where S is a nonempty set, τ is a triangle function, and F is a mapping form $S \times S$ into Δ^{+}such that, if $F_{p q}$ denotes the value of F at the pair (p, q), the following conditions hold for all p, q and r in S :
(PM1) $F_{p q}=\varepsilon_{0}$ if and only if $p=q ;(\theta$ is the null vector in $S)$
(PM2) $F_{p q}=F_{q p}$;
(PM2) $F_{p r} \geq \tau\left(F_{p q}, F_{q r}\right)$.
Definition 1.2.[2] A probabilistic normed space is a quadruple (V, v, τ, τ^{*}), where V is a real vector space, τ and τ^{*} are continuous triangle functions and v is a mapping from V into Δ^{+}such that for all p, q in V, the following conditions hold:
(PN1) $v_{p}=\varepsilon_{0}$ if, and only if, $p=\theta ;(\theta$ is the null vector in $V)$
(PN2) $\forall p \in V, v_{-p}=v_{p}$;
(PN3) $v_{p+q} \geq \tau\left(v_{p}, v_{q}\right)$;
(PN4) $v_{p} \leq \tau^{*}\left(v_{a p}, v_{(1-a) p}\right)$ for all a in $[0,1]$.
A Menger PN space under T is a PN space $\left(V, v, \tau, \tau^{*}\right)$, denoted by (V, v, T), in which $\tau=\tau_{T}$ and $\tau^{*}=\tau_{T^{*}}$ for some continuous t-norm T and its t-conorm T^{*}.

The PN space is called a Serstnev space if the inequality (PN4) is replaced by the equality $v_{p}=\tau_{M}\left(v_{a p}, v_{(1-a) p}\right)$, and, as a consequence, a condition stronger than (PN2) holds, namely $v_{\lambda p}(x)=v_{p}\left(\frac{x}{|\lambda|}\right)$, for all $p \in V, \lambda \neq 0$ and $x \in R$, i.e., the (S) condition (see [2]). The pair (V, v) is said to be a Probabilistic Seminormed Space (briefly, PSN space) if $v: V \rightarrow \Delta^{+}$satisfies (PN1) and (PN2).

Let $\left\{p_{n}\right\}_{n=1}^{\infty}$ be a sequence of points in V. A is a sequence that converges to p in V, if for each $t>0$, there is a positive integer N such that $v_{p_{n}-p}(t)>1-t$ for $n>N$, and is a Cauchy sequence,
if for each $t>0$ there is a positive integer N such that $v_{p_{n}-p_{m}}(t)>1-t$ for all $n, m>N$. A PN space is complete if every Cauchy sequence converges.

Definition 1.3.[7] A PSN space (V, v) is said to be equilateral if there is a d.f. $F \in \Delta^{+}$ different from ε_{0} and from $\varepsilon_{+\infty}$, such that, for every $p \neq \theta, v_{p}=F$. Therefore, every equilateral PSN space (V, v) is a PN space under $\tau=\tau^{*}=\tau_{M}$, where the triangle function is defined for $G, H \in \Delta^{+}$by
$\tau_{M}(G, H)(x)=\sup _{s+t=x} \min \{G(s), H(t)\}$.

An equilateral PN space will be denoted by (V, F, M).
Definition 1.4.[8] Let $\left(V, v, \tau, \tau^{*}\right)$ be a PN space, for $p \in V$ and $\lambda \in(0,1)$. We give the following two conditions:
$\left(Z_{1}\right)$ For all $a \in(0,1)$, there exists a $\beta \in[1, \infty[$ such that
$v_{p}(\lambda)>1-\lambda$ implies $v_{a p}(a \lambda)>1-\frac{a}{\beta} \lambda$.
$\left(Z_{2}\right)$ For all $a \in(0,1)$, let $\beta_{0}(a, \lambda)=\frac{1+\sqrt{1-4 a(1-a) \lambda}}{2}$, then

$$
v_{p}(\lambda)>1-\lambda \text { implies } v_{a p}(a \lambda)>1-\frac{a}{\beta_{0}(a, \lambda)} \lambda .
$$

Definition 1.5.[7] There is a natural topology in the PN space (V, v, τ, τ^{*}), and it is called strongly topology, defined by the following neighborhoods: $N_{p}(\lambda)=\left\{q \in V: v_{q-p}(\lambda)>1-\lambda\right\}$,
where $\lambda>0$. The strongly neighborhood system for V is the union $\cup_{p \in V} N_{p}$, where $N_{p}=\left\{N_{p}(\lambda) ; \lambda>0\right\}$. In the strongly topology, the closure $\overline{N_{p}(\lambda)}$ of $N_{p}(\lambda)$ is defined by
$\overline{N_{p}(\lambda)}:=N_{p}(\lambda) \bigcup N_{p}(\lambda)$, where $N_{p}(\lambda)$ is the set of limit points of all convergent sequences in $N_{p}(\lambda)$. From [5, Theorem 3], we know every PN space ($V, \mathrm{v}, \tau, \tau^{*}$) has a completion. C.Alsina, B.Schweizer and A. Sklar [3, Theorem 1] have proved that v is a uniformly continuous mapping from V into Δ^{+}.

Now, we give two different definitions of the contractions in PN space.

Definition 1.6.[7](i).A mapping $f:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(U, \mu, \sigma, \sigma^{*}\right)$ is a B-contraction, if there is a constant $k \in(0,1)$ such that for all p and q in V, and all $\mathrm{x}>0$,
$\mu_{f(p)-f(q)}(k x) \geq v_{p-q}(x)$.
(ii). A mapping $f:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(U, \mu, \sigma, \sigma^{*}\right)$ is an H-contraction, if there is a constant $k \in(0,1)$ such that for p and q in V, and all $\mathrm{x}>0$,
$v_{p-q}(x)>1-x$ implies $\mu_{f(p)-f(q)}(k x)>1-k x$.

Remark 1.1. If f is a linear operator, for all $p \in V$, we have that (1.5) is equivalent to $\mu_{f(p)}(k x) \geq v_{p}(x)$ and (1.6) is equivalent to that
$v_{p}(x)>1-x$ implies $\mu_{f(p)}(k x)>1-k x$.
Definition 1.7. [6] Given a nonempty set A in a PN space (V, v, τ, τ^{*}), the probabilistic radius R_{A} of A is defined by
$R_{A}(x):=\left\{\begin{array}{c}\ell^{-} \varphi_{A}(x), x \in[0,+\infty[, \\ 1, x=+\infty,\end{array}\right.$
where $\ell^{-} f(x)$ denotes the left limit of the function f at the point x and

$$
\varphi_{A}(x):=\inf \left\{v_{p}(x): p \in A\right\} .
$$

As a consequence of DEFINITION 1.7., we have $v_{p} \geq R_{A}$ for all $p \in A$.
Definition 1.8. [9] In a PN space $\left(V, v, \tau, \tau^{*}\right)$, a mapping $f: V \rightarrow V$ is said to be strongly ε-continuous $(\varepsilon>0)$, if for each $p \in V$, it admits a strong λ-neighborhood $N_{p}(\lambda)$ such that

$$
R_{f\left(N_{p}(\lambda)\right)}(\varepsilon)>1-\varepsilon .
$$

Lemma 1.9. [9] Suppose (V, v, τ, τ^{*}) be a PN space and $A \subset V$. If $f: A \rightarrow A$ is strongly ε-continuous, then for each $p \in A$ and $\varepsilon>0$, we have

$$
v_{f(p)}(\varepsilon)>1-\varepsilon .
$$

2. Main Results

Definition 2.1. A mapping $f:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(U, \mu, \sigma, \sigma^{*}\right)$ is strongly continuous, if for any $\varepsilon>0$, there exists $\delta>0$ such that
$q \in N_{p}(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$,
where $\left(V, v, \tau, \tau^{*}\right)$ and $\left(U, \mu, \sigma, \sigma^{*}\right)$ are PN spaces, and $p, q \in V \backslash\{\theta\}$.
Theorem 2.1. In a PN space (V, v, τ, τ^{*}) with $\tau \geq \tau_{W}$, a strongly ε-continuous mapping $f: V \rightarrow V$ is strongly continuous.

Proof. Let $\varepsilon<1 / 2$. In view of Definition 1.8, there exists $\delta>0$ such that $R_{f\left(N_{p}(\delta)\right.}(\varepsilon / 2)>1-\varepsilon / 2$, therefore $q \in N_{p}(\delta) \Rightarrow v_{f(q)}(\varepsilon / 2) \geq R_{f\left(N_{p}(\delta)\right)}(\varepsilon / 2)>1-\varepsilon / 2$, i.e.,
$v_{p-q}(\delta)>1-\delta$ implies $v_{f(q)}(\varepsilon / 2)>1-\varepsilon / 2$. From $\quad p \in N_{p}(\delta) \quad, \quad$ we have $v_{f(p)}(\varepsilon / 2) \geq R_{f\left(N_{p}(\delta)\right.}(\varepsilon / 2)>1-\varepsilon / 2$, thus

$$
\begin{aligned}
v_{f(p)-f(q)}(\varepsilon) & \geq \tau\left(v_{f(p)}, v_{f(q)}\right)(\varepsilon) \\
& \geq \tau_{W}\left(v_{f(p)}, v_{f(q)}\right)(\varepsilon) \\
& =\sup _{s+t=\varepsilon} W\left(v_{f(p)}(s), v_{f(q)}(t)\right) \\
& \geq W\left(v_{f(p)}(\varepsilon / 2), v_{f(q)}(\varepsilon / 2)\right) \\
& \geq W(1-\varepsilon / 2,1-\varepsilon / 2) \\
& =1-\varepsilon
\end{aligned}
$$

i.e., $f(q) \in N_{f(p)}(\varepsilon)$. So $\forall q \in N_{p}(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$.

Theorem 2.2. Let $\left(V, v, \tau, \tau^{*}\right)$ be a PN space, then
(i). A B-contraction mapping is strongly continuous;
(ii). an H -contraction mapping is strongly continuous.

Proof. (i). Suppose (V, v, τ, τ^{*}) be a PN space and $f: V \rightarrow V$ be B-contraction. According to Definition 1.6, there is a constant $k \in(0,1)$ such that for p and q in V, and $\mathrm{x}>0$
$v_{f(p)-f(q)}(k x) \geq v_{p-q}(x)$.

Therefore, let $\mathrm{a}>1$, we have
$v_{f(p)-f(q)}(a x) \geq v_{f(p)-f(q)}(k x) \geq v_{p-q}(x)$.

Let $v_{p-q}(x)>1-x$ we have
$v_{f(p)-f(q)}(a x) \geq v_{p-q}(x)>1-x>1-a x$,
i.e.,
$q \in N_{p}(x) \Rightarrow f(q) \in N_{f(p)}(a x)$.

So for $\varepsilon>0$, set $\delta=\varepsilon / a$ such that
$q \in N_{p}(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$.

By Definition 2.1., we have that f is strongly continuous.
(ii). Suppose $\left(V, v, \tau, \tau^{*}\right)$ be a PN space and $f: V \rightarrow V$ be H -contraction, and if $\varepsilon>0$, in view of Definition 1.6, there is a constant $k_{0} \in(0,1)$ such that for p and q in V,
$v_{p-q}\left(\varepsilon / k_{0}\right)>1-\varepsilon / k_{0}$ implies $v_{f(p)-f(q)}(\varepsilon)>1-\varepsilon$,
i.e.,
$q \in N_{p}\left(\varepsilon / k_{0}\right) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$.

So for $\varepsilon>0$, set $\delta=\varepsilon / k_{0}$ such that
$q \in N_{p}(\delta) \Rightarrow f(q) \in N_{f(p)}(\varepsilon)$.

Basing on Definition 2.1., we have proven that f is strongly continuous.
The following examples, Example 2.1. and 2.2., show that a B-contraction isn't necessarily an H-contraction, an H-contraction isn't necessarily a B-contraction, and a strongly continues mapping isn't necessarily a B-contraction or an H-contraction.

Example 2.1. Let V be a vector space and $v_{\theta}=\mu_{\theta}=\varepsilon_{0}$, if $a \in(2,3), \mathrm{p}, q \in V(\mathrm{p}, q \neq \theta)$ and $x \in \bar{R}$,
$v_{p}(x)=\left\{\begin{array}{c}0, x \leq a \\ 1, x>a\end{array} \mu_{p}(x)=\left\{\begin{array}{c}0, x \leq 0 \\ 1 / a, 0<x \leq \frac{2 a}{3} \\ 2 / a, \frac{2 a}{3}<x<\infty \\ 1, x=\infty\end{array}\right.\right.$
and if $\tau\left(v_{p}, v_{q}\right)(x)=\tau^{*}\left(v_{p}, v_{q}\right)(x)=\operatorname{supmin}_{s+t=x}\left(v_{p}(s), v_{q}(t)\right)$, then $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V, \mu, \tau, \tau^{*}\right)$ are equilateral PN spaces by Definition 1.3. Now let $\mathrm{I}:\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V, \mu, \tau, \tau^{*}\right)$ be the identity operator, then I is not a B-contraction, but an H -contraction. In fact, for every $k \in(0,1), x>a$ and $p \neq \theta$, $\mu_{I p}(k x) \leq \mu_{I p}(x)=\mu_{p}(x)=\frac{2}{a}<1=v_{p}(x)$. Hence I is not a B-contraction.

Next we'll prove that I is an H-contraction. Suppose $v_{p}(x)>1-x$, where $p \neq \theta$. This condition holds only if $x>1$. In fact, if $x \leq 1$, then $v_{p}(x)=0 \leq 1-x$. For $a \in(2,3)$, if $1<x \leq a$, let $h=\frac{2}{3}$, then $\frac{2}{3}<h x \leq \frac{2 a}{3}$, therefore $\mu_{I p}(h x)=\mu_{p}(h x)=\frac{1}{a}>\frac{1}{3}=1-\frac{2}{3}>1-h x$. If $x>a$, let $h=\frac{2}{3}$, then $h x>\frac{2 a}{3}$, therefore $\mu_{I p}(h x)=\mu_{p}(h x)=\frac{2}{a}>1-\frac{a}{2}>1-\frac{2 a}{3}>1-h x$. Thus there is a constant $h=\frac{2}{3}$ such that for all points $p \neq \theta$ in V, and all $x>0$,
$v_{p}(x)>1-x$ implies $\mu_{I p}(h x)>1-h x$,
i.e., I is an H-contraction. In view of Theorem 2.2. (ii), we have that I is strongly continuous.

Example 2.2. Let $V=V^{\prime}=\bar{R}, v_{0}=\mu_{0}=\varepsilon_{0}$, if, for $\mathrm{x}>0, p \neq 0$ and $a=\frac{k+3}{2}$, where $k \in(0,1)$,

$$
v_{p}(x)=\left\{\begin{array}{c}
0, x \leq 0 \\
\frac{1}{a}, 0<x \leq a \\
1, a<x \leq \infty
\end{array} \quad \mu_{p}(x)=\left\{\begin{array}{c}
0, x \leq 0 \\
\frac{1}{a}, 0<x \leq \frac{a}{2} \\
1, \frac{a}{2}<x \leq \infty
\end{array}\right.\right.
$$

and if $\left.\tau\left(v_{p}, v_{q}\right)(x)=\tau^{*}\left(v_{p}, v_{q}\right)(x)=\operatorname{supmin}_{s+t=x}\left(v_{p}(s), v_{q}(t)\right)\right)$, then $\left(\bar{R}, v, \tau, \tau^{*}\right)$ and $\left(\bar{R}, \mu, \tau, \tau^{*}\right)$ are equilateral PN spaces by Definition 1.3. Now let $\mathrm{I}:\left(\bar{R}, v, \tau, \tau^{*}\right) \rightarrow\left(\bar{R}, \mu, \tau, \tau^{*}\right)$ be the identity operator, then I is not an H-contraction, but a B-contraction. In fact, for every $k \in(0,1)$, we have that $a=\frac{k+3}{2} \in\left(\frac{3}{2}, 2\right)$. Let $x=\frac{1}{a}$, we have that $v_{p}(x)=v_{p}\left(\frac{1}{a}\right)=\frac{1}{a}>1-\frac{1}{a}=1-x$. But,
$\mu_{l p}(k x) \leq \mu_{l p}(x)=\mu_{l p}\left(\frac{1}{a}\right)=\mu_{p}\left(\frac{1}{a}\right)=\frac{1}{a}<1-\frac{k}{a}=1-k x$.
Hence I is not an H -contraction. Meanwhile, for every $p \in \bar{R}$ and $\mathrm{x}>0$, there exists a constant $k_{0}=\frac{2}{3}$ such that
$\mu_{I p}\left(k_{0} x\right)=\mu_{I p}\left(\frac{2 x}{3}\right)=\mu_{p}\left(\frac{2 x}{3}\right) \geq \mu_{p}\left(\frac{x}{2}\right)=\left\{\begin{array}{l}0, x \leq 0 \\ \frac{1}{a}, 0<x \leq a=v_{p}(x), \\ 1, a<x \leq \infty\end{array}\right.$
i.e., I is a B-contraction. In view of Theorem 2.2.(ii), I is strongly continuous.

Example 2.3. Let PN space $\left(V, v, \tau, \tau^{*}\right)$ and $\left(V, \mu, \tau, \tau^{*}\right)$ satisfy Example 2.1, and I: $\left(V, v, \tau, \tau^{*}\right) \rightarrow\left(V, \mu, \tau, \tau^{*}\right)$ be the identity operator, then I is not strongly ε-continuous, but strongly continuous. In fact, according to Example 2.1., it is obvious that I is strongly continuous.

Now we are going to prove that I is not strongly ε-continuous. Suppose I is strongly ε continuous. Let $A \subset V$ be not empty. In view of Lemma 1.1., for each $p \in A$ and $\varepsilon>0$, we have
$\mu_{I p}(\varepsilon)>1-\varepsilon_{.}$However, let $\varepsilon_{0} \in\left(0, \frac{1}{3}\right)$, for each $p \in A$ and $p \neq 0$, we have
$\mu_{I p}\left(\varepsilon_{0}\right)=\mu_{p}\left(\varepsilon_{0}\right) \leq \mu_{p}\left(\frac{1}{3}\right)=\frac{1}{a}<\frac{2}{3}<1-\varepsilon_{0}$. Thus, there appears a contradiction. So, we have that I is not strongly ε-continuous.

Lemma 2.1. [10] Let V be Banach space and D be a compact and convex subset of V. If $f: D \rightarrow D$ is a strongly continuous mapping, then f has at least one fixed point on D.

Not all PN spaces are Banach spaces; Lemma 2.2. shows that under some conditions, a PN space is a Banach space.

Lemma 2.2. [8] Let $\left(V, v, \tau, \tau^{*}\right)$ be a TV PN space and $N_{\theta}(\lambda)$ be strong λ-neighborhoods of θ, where $\lambda \in(0,1)$.
(i) Suppose $\tau \geq \tau_{W}$. If there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{1}\right)$, then $\left(V, v, \tau, \tau^{*}\right)$ is nomable.
(ii) Suppose $\tau \geq \tau_{\pi},(\pi=\operatorname{Prod})$. If there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{2}\right)$, then $\left(V, \nu, \tau, \tau^{*}\right)$ is nomable.

Theorem 2.3. Let A be a compact and convex subset of TV PN space $\left(V, v, \tau, \tau^{*}\right)$ and $f: A \rightarrow A$ be a strongly continuous mapping.
(i) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{1}\right)$, then f has at least one fixed point on A.
(ii) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{2}\right)$, then f has at least one fixed point on A.

Proof. In view of Lemma 2.1. and Lemma 2.2., it is obvious that Theorem 2.3. holds.
Corollary 2.1. Let A be a compact and convex subset of TV PN space (V, v, τ, τ^{*}) and $f: A \rightarrow A$ be a B-contraction or an H -contraction mapping.
(i) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{1}\right)$, then f has at least one fixed point on A.
(ii) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{2}\right)$, then f has at least one fixed point on A.

Proof. In view of Theorem 2.2., we have that $f: A \rightarrow A$ is a strongly continuous mapping on A. By Theorem 2.3., f has at least one fixed point on A.

Corollary 2.2. Let A be a compact and convex subset of TV PN space (V, v, τ, τ^{*}) and $f: A \rightarrow A$ be a strongly ε-continuous mapping.
(i) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{1}\right)$, then f has at least one fixed point on A.
(ii) Suppose $\tau \geq \tau_{W}$ and there is an $N_{\theta}(\lambda)$ satisfying $\left(Z_{1}\right)$, then f has at least one fixed point on A.

Proof. In view of Theorem 2.1., we have that $f: A \rightarrow A$ is a strongly continuous mapping on A. By Theorem 2.3., we have that f has at least one fixed point on A.

Theorem 2.4. Let A be a compact and convex subset of PN space $\left(V, v, \tau, \tau^{*}\right)$, where $(V, v, \tau$, τ^{*}) is a Banach space. If $f: A \rightarrow A$ is a strongly continuous mapping, then f has at least one fixed point on A.

Proof. In view of Lemma 2.1., it is obvious that Theorem 2.4. holds.
Let $\left(V, v, \tau, \tau^{*}\right)$ be a PN space and $f: V \rightarrow V$ be a single-valued self mapping. A point $p \in V$ with the property $v_{f(p)-p}=\varepsilon_{0}$ is called a fixed point of f on V. Note that, for every $p \in V /\{\theta\}$, if $v_{f(p)-p}(t)<1$ for all $t>0$ (see [12], Example 2.4.), then $f(p) \neq p$, i.e., f has no fixed point on V. In such a situation a question arises about the existence of an approximate fixed point. The following is the definition of the approximate fixed point in PN space.

Definition 2.2. [9] Suppose $\left(V, v, \tau, \tau^{*}\right)$ be a PN space and $A \subset V$. We call $p \in A$ an ε-fixed point of $f: A \rightarrow A$, if, there exists an $\varepsilon>0$ such that $\sup _{t<\varepsilon} v_{f(p)-p}(t)=1$. A self mapping $f: A \rightarrow A$ has approximate fixed point property (in short a.f.p.p.) if the function f possesses at least one ε-fixed point.

Definition 2.3. A is bounded, if for every $n \in N$ and for every $p \in A$, there is a $k \in N$ such that $v_{p / k}(1 / n)>1-1 / n$.

Lemma 2.3. [3] If $|\alpha| \leq|\beta|$, then $v_{a p} \geq v_{\beta p}$.
Theorem 2.5. Suppose A be a bounded and convex subset of PN space $\left(V, \nu, \tau, \tau^{*}\right)$ with $\tau \geq \tau_{W}$, where $\left(V, v, \tau, \tau^{*}\right)$ is a Banach space. If the mapping $f: A \rightarrow A$ is strongly ε-continuous, then f has at least one approximate fixed-point on A.

Proof. Since f is an ε-continuous on A, by Definition 1.8. and Lemma 1.1, we have that for every $p \in A, \sup _{\varepsilon>0} v_{f(p)}(\varepsilon)=1$. Let B be a compact and convex subset of A, defined by $B=(1-a) \bar{A}$, where \bar{A} is a closure of A and $(0<\mathrm{a}<1)$ In view of Theorem 2.1., we have that f is strongly continuous. We can define a strongly continuous function $g: B \rightarrow B$ by
$g(p)=(1-a) f(p), \forall p \in B$. By Theorem 2.4., there is a $p_{0} \in B$ such that $g\left(p_{0}\right)=p_{0}$, which implies $(1-a) f\left(p_{0}\right)=p_{0}$. Whence $v_{(1-a) f\left(p_{0}\right)-p_{0}}=\varepsilon_{0}$. Since $f\left(p_{0}\right)-p_{0}=(1-a) f\left(p_{0}\right)-p_{0}+a f\left(p_{0}\right)$, by (PN3) and Lemma 2.3., we have

$$
\begin{aligned}
v_{f\left(p_{0}\right)-p_{0}} & \geq \tau\left(v_{(1-a) f\left(p_{0}\right)-p_{0}}, v_{a f\left(p_{0}\right)}\right) \\
& =\tau\left(\varepsilon_{0}, v_{f\left(p_{0}\right)}\right) \\
& =v_{f\left(p_{0}\right)} .
\end{aligned}
$$

By taking sup over $0<t<\varepsilon$ on both sides of the inequality, we have $\sup _{0 \ll \varepsilon} v_{f\left(p_{0}\right)-p_{0}}(t) \geq \sup _{0 \ll \varepsilon \varepsilon} v_{f\left(p_{0}\right)}(t)$. Because $p_{0} \in B \subset A, \sup _{0 \ll \varepsilon} v_{f\left(p_{0}\right)}(t)=1$. So $\sup _{0 \lll \varepsilon} v_{f\left(p_{0}\right)-p_{0}}(t) \geq \sup _{0 \ll \varepsilon} v_{f\left(p_{0}\right)}(t)=1$. According to Definition 2.2. p_{0} is an approximate fixed point of f, thus f has at least one ε-fixed-point on A.

Acknowledgment

This work is supported by the Doctoral Program Research Foundation of Southwest University of Science and Technology (15zx7139).

References

1. A. N. Šerstnev, On the motion of a random normed space, 1963, Dokl. Akad. Nauk. SSSR., no. 149, pp. 280-283.
2. C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space, 1993, Aequationes Math., vol. 46, pp. 91-98.
3. C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, 1997, J. Math. Anal. Appl., vol. 208, pp. 446-452.
4. B. Lafuerza Guillén, C. Sempi, G. Zhang, M. Zhang, Countable products of probabilistic normed spaces, 2009, Nonlinear Analysis., vol. 71, pp. 4405-4414.
5. B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi, Completion of probabilistic normed spaces, 1995, Internat. J. Math. and Math. Sci., vol. 18, no.4, pp. 649-652.
6. B. Lafuerza Guillen, J.A. Rodríguez Lallena, C. Sempi, A study of boundedness in probabilistic normed spaces, 1999, J. Math. Anal. Appl., vol. 232, pp. 183-196.
7. B. Schweizer, A. Sklar, Probabilistic metric spaces, 1983, New York, Elsevier North-Holland.
8. G. Zhang, M. Zhang, On the normability of generalized Šerstnev PN spaces, 2006, J. Math. Anal. Appl., vol. 340, pp.1000-1011.
9. M. Rafi, M.S.M. Noorani, Approximate fixed-point theorem in probabilistic normed (Metric) spaces, 2006, Proceedings of the 2end IMT-GT Regional Conference on Mathematics, Statistics and Applicatons Universiti Sains, 2006, Malaysia, Penang, pp. 13-15.
10. D. Guo, Nonlinear functional analysis, 1985, Shandong Sci. and Tech. Press.
