Effect of substrate bias voltage on the microstructure and tribological properties of CrN coatings

Effect of substrate bias voltage on the microstructure and tribological properties of CrN coatings

Aouadi, K. Nouveau, C. Besnard, A. Tlili, B. Chafra, M. 

Arts et Metiers ParisTech, LaBoMaP, Cluny, 71250, France

Ecole Nationale d'Ingénieurs de Tunis, Campus Universitaire El Manar II, 2092 El Manar, Tunis, Tunisia

Laboratoire de Systèmes et de Mécanique Appliquée, 2078 La Marsa, Tunis, Tunisia

Page: 
9-15
|
DOI: 
https://doi.org/10.3166/acsm.40.9-15
Received: 
1 October 2015
| |
Accepted: 
7 January 2016
| | Citation

OPEN ACCESS

Abstract: 

CrN films were deposited on stainless steel and silicon substrates via magnetron reactive sputtering under a systematic variation of the substrate bias voltage. The influence of this substrate bias voltage on the structural and tribological properties of the films has been investigated. The results indicate that increasing the negative bias voltage has a large influence on the characteristic of the coatings: concerning their microstructure, we observed that the grain size increased. Moreover their coefficient of friction and wear rate are also influenced by the bias voltage. 

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
  References

[1] Qi, Z.B., Liu, B., Wu, Z.T., Zhu, F.P., Wang, Z.C., Wu, C.H.(2013). A comparative study of the oxidation behavior of Cr2N and CrN coatings. Thin Solid Films, 544: 515-520. https://doi.org/10.1016/j.tsf.2013.01.031

[2] Petrogalli, C., Montesano, L., Gelfi, M., La Vecchia, G.M., Solazzi, L.(2014). Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defects. Surface and Coatings Technology, 258: pp. 878-885. https://doi.org/10.1016/j.surfcoat.2014.07.063

[3] T. Polcar, N.M.G. Parreira, R. Novak, Surf. Coat. Tech. $201(2007) 5228-5235$

[4] F.B. Wu, J.J. Li, J.G. Duh, Thin Solid Films $377-378$ (2000) 354-359

[5] M. Vite, M. Moreno-Rios, E.A. Gallardo Hernandez, J.R. Laguna-Camacho, Wear 271 (2011) 1273-1279.

[6] H. Scheerer, H. Hoche, E. Broszeit, C. Berger, Surf. Coat. Tech. 142-144 (2001). 1017-1022.

[T] M. Oden, J. Almer, G. Hakansson, Surf. Coat. Tech. 120-121 (1999) 272-276.

[8] Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Mat. Sci. Eng. B 176(2011) 850 854

[9] C.H. Hsu, K.L. Chen, Z.H. Lin, C.Y. Su, C.K. Lin, Thin Solid Films 518 (2010) 3825-3829.

[10] Q.M. Wang, S.H. Kwon, K.H. Kim, Trans. Nonferrous Met. Soc. China, 21 (2011) 73-77.

[11] F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, A. Billard, Surf. Coat. Tech. 224 (2013) is?

[12] C.T. Lee, W.H. Cho, M.H. Shiao, C.-N. Hsiao, K.S. Tang, C.C. Jaing, Procedia Eng. 36 $-(2012) 316-321$

[13] B. Tlili, PhD, Arts et Metiers ParisTech/ENIT, 2010, number 2010-ENAM-0059.

[14] Y. Benlatreche, PhD, Arts et Metiers ParisTech, 2011 , number 2011 -ENAM-0014.

[15] F. Zhou, K. Chen, M. Wang, X. Xu, H. Meng, M. Yu, Z. Dai, Wear 265 (2008) 1029-1037.

[16] M. Hua, H.Y. Ma, J. Li, C.K. Mok, Surf. Coat. Tech. 200 (2006) 3612-3625.

[17] Y.N. Kok, P.Eh. Hovsepian, Q. Luo, D.B. Lewis, J.G. Wen, I. Petrov, Thin Solid Films 475 (2005) 219-226.

[18] J. Romero, M.A. Gómez, J. Esteve, F. Montala, L. Carreras, M. Grifol, A. Lousa, Thin Solid Films $515(2006) 113-117$

[19] Q. Kong, L. Ji, H.Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Mat. Sci. Eng. B 176 (2011) 850-854