Intermediate temperature solid oxide fuel cell performance optimisation

Intermediate temperature solid oxide fuel cell performance optimisation

Lionel Combemale Visweshwar Sivasankaran Gilles Caboche 

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, BP 47870, Dijon, 21078, France

1 October 2015
7 January 2016
11 May 2016
| Citation



The performances of anode-supported Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFC), obtained by tape casting, are investigated. The tested cells are composed of four layers: cathode, electrolyte, anode and Anode Functional Layer (AFL). The AFL has to ensure mechanical compatibility between anode and electrolyte and to increase the output power. First performance tests are conducted in the 500°C - 600°C temperature range to determine the maximum power density. In a second time, other parameters are investigated: cathode and electrolyte thickness. For each modification, the performance, in terms of power density, is measured. These results lead to the production of optimised cells which are used to realise long term ageing tests under working conditions. First reactivity results are then discussed.

1. Introduction
4. Conclusions

[1] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 345-352.

[2] D. J. L. Brett, A. Atkinson, N. P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev. 37 (2008) 1568-1578.

[3] C. Ding, H. Lin, K. Sato, K. Amezawa, T. Kawada, J. Mizusaki, T. Hashida, Effect of thickness

uf Gu_o, $\mathrm{Ce}_{0,9} \mathrm{O}_{1,95}$ electrulyte filins un electrical performance of anvde-supported solid oxide fuel cells, J. Power Sources 195 (2010) 5487-5492.

[4] V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, J.R. Frade, Ceria-based materials for solid oxide fuel cells, J. Mat. Sciences $36(2001) 1105-1117$.

[5] K. Swierczek, Thermoanalysis, nonstoichiometry and thermal expansion of

$\begin{array}{cccc}\mathrm{La}_{0.4} \mathrm{Sr}_{0.6} \mathrm{Co}_{0.2} \mathrm{Fe}_{0.8} \mathrm{O}_{3-8}, & \mathrm{La}_{0.2} \mathrm{Sr}_{0.8} \mathrm{Co}_{0.2} \mathrm{Fe}_{0.8} \mathrm{O}_{3-8}, & \mathrm{La}_{0.9 \mathrm{r}_{0.1}} \mathrm{Co}_{1 / 3} \mathrm{Fe}_{1 / 3} \mathrm{Ni}_{1 / 3} \mathrm{O}_{3-6} & \text { and }\end{array}$

$\mathrm{La}_{0.6} \mathrm{Sr}_{0.4} \mathrm{Co}_{0.2} \mathrm{Fe}_{0.6} \mathrm{Ni}_{0.2} \mathrm{O}_{3-8}$ perovskites, Solid State Ionics, $179(2008) 126-130$

[6] V. Dusastre, J. A. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics $126(1999) 163-174$

[7] E. Perry Murray, M.J. Sever, S.A. Barnett, Electrochemical performance of (La,Sr)(Co,Fe)O3(Ce,Gd)O_scomposite cathodes, Solid State Ionics $148(2002) 27-34$

[8] R. Martinez-Coronado, J.A. Alonso, M.T. Frenandez-Diaz, SrMo_ggCo_1O_3-\delta: A potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC), J. Power Snurces 258 (2014) $76-82$.

[9] A. Azzolini, J. Downs, V.M. Sglavo, Fabrication and co-sintering of thin tubular IT-SOFC with Cu2O-GDC cermet supporting anode and Li_{2 } \mathrm { O } - \text { doped } \mathrm { GDC } \text { electrolyte, } \mathrm { J } . \text { Eur. Ceram. Soc. } 3 5

(2015) 2119-2127.

[10] R.V. Wandekar, M. Ali-Basu, B.N. Wani, S.R. Bharadwaj, Physicochemical studies of NiOGDC composites. Mat. Chem. Phys. 99 (2006) 289-294.

[11] B.C.H. Steele, Fuel-cell technology: Running on natural gas, Nature 400 (1999) 619-621.

[12] K. Joon, Fuel cells - a 21 " century power system, J. Power Sources 71 (1998) 12-18.

[13] Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang, P. Cheang Effect of characteristics of $\mathrm{Y}_{2} \mathrm{O}_{3} / \mathrm{ZrO}_{2}$ powders on fabrication of anode-supported solid oxide fuel cells, J. Power Sources 117 $(2003) 26-34$

[14] M. Letilly, O. Joubert, M. Caldes, A. Le Gal La Salle, Tape casting fabrication, co-sintering and optimisation of anode/electrolyte assemblies for SOFC based on BIT07-Ni/BIT07, Int. J. Hydrogen Energy 37 (2012) 4346-4355.

[15] T.L. Ren, H.J. Zhao, L.T. Liu, $Z . \mathrm{J} .$ Li, Piezoelectric and ferroelectric films for microelectronic applications, Mater. Sci. Eng. B 99 (2003) 159-163.

[16] W. Tavernor, H.P.S. Li, A.J. Bell, R. Stevens, Improved Compaction in Multilayer Capacitor Fabrication, J. Eur. Ceram. Soc. 19 (1999) 1691-1695.

[17] L.F.G. Setz, I. Santacruz, M.T. Colomer, S.R.H. Mello-Castanho, R. Moreno, Tape casting of strontium and cobalt doped lanthanum chromite suspensions, J. Eur. Ceram. Soc. 30 (2010) 2897-


[18] J.-H. Myung, H.J. Ko, H.G. Park, M. Hwan, S.H. Hyun, Fabrication and characterization of planar-type SOFC unit cells using the tape-casting/lamination/co-firing method, Int. J. Hydrogen Energy 37 (2012) 498-504.

[19] S. Beaudet Savignat, M. Chiron, C. Barthet, Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature, J. Eur. Ceram. Soc. $27(2007) 673-678$. [20] K. Chen, X. Chen, Z. Lu, N. Ai, X. Huang, W. Su, Performance of an anode-supported SOFC with anode functional layers, Electrochimica Acta 53 (2008) 7825-7830.

[21] V. Sivasankaran, L. Combemale, M.C. Péra, G. Caboche. Initial Preparation and Characterization of single Step Fabricated Intermediate Temperature Solid Oxide Fuel Cells (ITSOFC), Fuel Cells 14 (2014) 533-536.

[22] V. Sivasankaran, L. Combemale, G. Caboche, Procédé de préparation d'une pile à combustible, French Patent $n^{\circ}$ WO 2014057218 A2.

[23] R.V. Wandekar, M. Ali (Basu), B.N. Wani, S.R. Bharadwaj, Physicochemical studies of NiOGDC composites, Mat. Chem. Phys. 99 (2006) 289-294.

[24] H. Xiao, T. Reitz, Anode-Supported Solid Oxide Fuel Cells with Thin Film Electrolyte for Operation at Reduced Temperatures, ECS Transactions 1 (2008) 201-208.

[25] H. A. Taroco, J. A. F. Santos, R. Z. Domingues and T. Matencio, Advanced in Ceramics Synthesis and Characterisation, Processing and specific Applications. Intech, 2011 .