Prediction of the viscoelastic properties of an asphalt mixture: Micromechanical and experimental approaches

Prediction of the viscoelastic properties of an asphalt mixture: Micromechanical and experimental approaches

Rabeb Cherif Anissa Eddhahak Thomas Gabet Ferhat Hammoum Jamel Neji 

Laboratoire de matériaux, d’optimisation et d’énergie pour la durabilité, École nationale d’ingénieurs de Tunis, BP 37, Le Belvédère, 1002, Tunis, Tunisie

PIMM, CNRS UMR 8006, arts et métiers ParisTech, 151, boulevard de l’Hôpital, 75013 Paris, France

IFSTTAR, MAST, MIT, route de Bouaye CS4, 44344 Bouguenais cedex, France

Corresponding Author Email: 
rabebcherif90@gmail.com; anissa.eddhahak@ensam.eu; thomas.gabet@ifsttar.fr; ferhat.hammoum@ifsttar.fr; jamel.neji@enit.rnu.tn
Page: 
165-176
|
DOI: 
https://doi.org/10.3166/rcma.2017.00012
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

The asphalt mixtures are composed of aggregates and asphalt used in the construction of the majority of roads. In order to ensure the sustainability of the infrastructures, the evaluation of the quality and the performances of these materials are essential. In this context, several researches have been focused on the development of predictive models, often empirical ones, in order to deduce the viscoelastic properties of an asphalt mixture based on the properties of its constituents (binder and/or aggregate). In this context, we suggest a homogenization model based on the generalized self-consistent scheme (GSC) to predict the complex module of the asphalt concrete from the properties of its components. In the aim of the approach validation, different types of mixtures (hot and warm) made in the laboratory were tested. The results showed that one can predict the complex modulus of the different types of asphalt concretes for temperatures less than 20 °C. However, beyond this temperature, the precision of the model decreases. Besides, the comparison of the micromechanical model with the rheologic models in literature showed that the suggested model can be also relevant in terms of predictions as the considered models.

Keywords: 

asphalt mixture, viscoelastic, homogenization, GSC, complex module

1. Introduction
2. Présentation des modèles
3. Matériaux testés
4. Résultats et discussion
  References

Alam S.Y. (2015). Détermination des propriétés mécaniques d’enrobes bitumineux à partir des caractéristiques des constituants. Rapport de recherche, laboratoire central des Ponts et Chaussées, université de Marne la Vallée.

Al-Khateeb G., Shenoy A., Gibson N., Harman T. (2006). A new simplistic model for dynamic modulus predictions of asphalt paving mixtures. J. Assoc. Asph. Paving Technol., vol. 75, p. 1254-1293.

Andrei D., Witczak M.W., Mirza M.W. (1999). Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures. NCHRP 1-37A Interim Team Report University of Maryland.

Bari J., Witczak M.W. (2006). Development of a new revised version of the Witczak E*predictive model for hot mix asphalt mixtures. J. Assoc. Asph. Paving Technol., vol. 75, p. 381-423.

Christensen R.M., Lo K.H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids, vol. 27, p. 315-330.

Christensen D.W., Pellinen T., Bonaquist R.F. (2003). Hirsch model for estimating the modulus of asphalt concrete. J. Assoc. Asph. Paving Technol., vol. 72, p. 97-121.

Eddhahak-Ouni A., Vandamme M., Vu V.T. (2015). Micromechanical contribution for the prediction of the viscoelastic properties of high rate recycled asphalt and influence of the level blending. Arch. Civil Mech. Eng., vol. 312.

Hervé E., Zaoui A. (1993). N-Layered inclusion based micromechanical modeling. Int. J. Eng. Sci., vol. 31, p. 1-10.

Lopes M., Gabet T., Bernucci L., Mouillet V., Brosseaud Y. (2014). CouplingWMAtechnique to a high rate of RAP, in laboratory. Mater. Struct., doi: 10.1617/s11527-014- 0454-9.

Pouget S., Sauzéat C., Di Benedetto H., Olard F. (2010). From the behavior of constituent materials to the calculation and design of orthotropic bridge structures. Road Mater. Pavement Des., vol. 11, no 1, p. 111-144. doi: 10.1080/14680629.2010.9690329.

Pouget S., Sauzéat C., Di Benedetto H., Olard F. (2012). Modeling of viscous bituminous wearing course materials on orthotropic steel deck. Mater. Struct., vol. 45, p. 1115-1127, doi: 10.1617/s11527-011-9820-z.

Vu V.T. (2014). Modélisation multi-échelle du comportement viscoélastique de l’enrobé bitumineux a fort recyclage : approche numérique. Rapport de recherche ESTP.

Yin H.M., Buttlar W.G., Paulino G.H., Di Benedetto H. (2008). Assessment of existing micromechanical models for asphalt mastics considering viscoelastic effects. Road Mater Pavement Des., vol. 9, no 1, p. 31-57.