Modeling of titanium alloys by an identification strategy: Biomechanical application

Modeling of titanium alloys by an identification strategy: Biomechanical application

Rym Harbaoui Amna Znaidi Rachid Nasri 

Laboratoire de mécanique appliquée et ingénierie LR-MAI-ENIT, université Tunis – El Manar, École nationale d’ingénieurs de Tunis, BP 37, Le Belvédère, 1002, Tunis, Tunisie

Institut préparatoire aux études d’ingénieurs d’El Manar, université Tunis – El Manar, BP 244, CP 2092, Tunis, Tunisie

Corresponding Author Email: 
rym.harbaoui@gmail.com; amna.znaidi@laposte.net; rachid.nasri@enit.rnu.tn
Page: 
73-86
|
DOI: 
https://doi.org/10.3166/rcma.2017.00005
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

Titanium, as an attractive material for numerous industries was introduced into engineering practice as a high strength, corrosion resistant material in the last century. More recently, it has found increasing applications in aerospace and transport industry but mostly in the biomedical field. Moreover, titanium alloys were used the total hip prosthesis (PTH) femoral stem because of their biocompatibility and their low Young’s modulus very close to that of the bone. The present work is concerned with the study of the mechanical behavior of the PTH femoral stem made of titanium alloys. To achieve this goal, a modeling study followed by a new identification strategy is presented. Thus, the use of a behavior law, taking into account the microstructural state of titanium (Tia and Tib), is essential in order to provide a reliable model for a future implementation in finite element software. The results obtained from the modeling and from the identification procedure will subsequently be used to study the mechanical behavior of this material when subjected to several stresses.

Keywords: 

titanium, behavior law, material identification, anisotropy, titanium, bone prosthesis

1. Introduction
2. Mise en situation : de la mécanique dans le médical
3. Le modèle d’identification
4. Procédure d’identification
5. Résultats et discussion
6. Conclusion
  References

Adesina O., Popoola P., Fatoba O., (2016). Laser surface modification – A focus on the wear degradation of titanium alloy. Fiber Laser, vol. 16, p. 368-381.

Aifantis ErIas C. (1987). The physics of plastic deformation. Int. J. Plast., vol. 3, p. 211-247.

Al Alaoui A., Rabhi I. (2016). Aseptic loosening of total hip prosthesis due to fracture of the stem. Pan Afr. Med. J., vol. 27, p. 16-23.

Azarkane M., Boussakri H., Shimi M., Elibrahimi A., Elmrini A. (2013). Les complications tardives de prothèse totale de la hanche : à propos de 42 cas. Pan Afr. Med. J., vol. 27, p. 14-17.

Baganna M., Znaïdi A., Kharroubi H., Nasri R. (2010). Identification of anisotropic plastic behavior laws for aluminum2024 after heat treatment materials from off-axis testing. International Conference of Plasticity, Toulouse.

Cazacu O., Plunkett B., Barlat F. (2006). Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast., vol. 22, p. 1171-1194.

Cazacu O., Plunkett B., Barlat F. (2008). Orthotropic yield criterion description of anisotropy in tension and compression of sheet metals. Int. J. Plast., vol. 24, p. 847-866.

Cazacu O., Ionescu I.R., Yoon J.W. (2009). Orthotropic strain rate potential for the description of anisotropy in tension and compression of metals. Int. J. Plast., vol. 26, p. 887-904.

Chandola N., Mishra K.R., Cazacu O. (2015). Application of the VPSC model to the description of the stress-strain response and texture evolution in AZ31. J. Eng. Mater. Technol., vol. 137, p. 14-116.

Cui Chunxiang, BaoMin H., Lichen Z., Shuangjin L. (2011). Titanium alloy production technology, market prospects and industry development. Mater. Des., vol. 32, p. 1684-1691.

Daghfas O., Znaidi A., Nasri R. (2015). Anisotropic behavior of mild steel subjected to isotropic and kinematic hardening, 6th International Conference on Advances in Mechanical Engineering, Hammamet, Tunisia.

Gronostajsk Z., (2000). The constitutive equations for fem analysis. J. Mater. Process. Technol., vol. 106, p. 40-44.

Hill R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A. Math. Phys. Sci., vol. 193, p. 281-297.

Rack J.H., Qazi J. (2005). Titanium alloys for biomedical applications. Mater. Sci. Eng., vol. 26, p. 1269-1277.

Kochbati R., Rebai H. (2016). Predictive factors of aseptic loosening of cemented total hip prostheses. Pan Afr. Med. J., vol. 20, p. 24-260

Long Marc J., Rack H. (1997). Titanium alloys in total joint replacement materials science perspective. Biomaterials, vol. 19, p. 1621-1639

Mareau C., Daymond M.R. (2016). Micromechanical modeling of twinning in polycrystalline materials: application to magnesium. Int. J. Plast., vol. 85, p. 156-171.

Nouari M. (2014). The physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear. Metals, vol. 4, p. 335-358.

Revil-Baudard B., Massoni E. (2009). Simulation de la mise en forme d’alliage de titane à froid, 19e Congrès français de mécanique, Marseille, vol. 9, p. 6.

Revil-Baudard B., Cazacu O. (2016). Plasticity-damage coupling in anisotropic titanium and validation by XCMT, XXIV ICTAM, 21-26 August 2016, Montreal, Canada.

Yueqian J., Xiang L., Yuanli B. (2012). Experimental study on mechanical properties of AZ31B magnesium alloy sheets under multiaxial loading. Automot. Saf. Energy, vol. 197, p. 25-48.

Znaidi A., Daghfas O., Toussaint F., Nasri R. (2015). Strategy for the identification of anisotropic behavior laws for Ti40 sheets, AMPT 2015, Madrid, Spain.