Identification of the Metal Waste Using an Electromagnetic Sensor

Identification of the Metal Waste Using an Electromagnetic Sensor

Ghlam KarimaAyad Abdelghani Nafaa Dahman  

Laboratoire de Recherche, Intelligent Control and Electrical Power Systems(ICEPS), 89, Rue Larbi Ben M’hidi, Université Djillali Liabès,Faculté de Génie Electrique, Sidi Bel Abbes 22000, Algerie

Corresponding Author Email: 
Karighlam16@yahoo.fr
Page: 
17-23
|
DOI: 
https://doi.org/10.18280/mmc_c.790201
Received: 
31 January 2018
| |
Accepted: 
20 May 2018
| | Citation

OPEN ACCESS

Abstract: 

This article describes a new method for identification of non-ferrous scrap metals using an Electromagnetic Sensor (EMS) that is based on the Eddy Current (EC) principle. Electromagnetic sensor is a suitable tool for identifying recoverable waste products. The identification of particles is essential to facilitate their recovery. This study deals with the 3D modelling of electromagnetic sensor located above for a representative cylindrical form particle sample of the waste. Based on the EC, we are going to be estimating the electric conductivity of the metal waste by using least squares methods (LSM) and the inverse model. Results obtained by the finite element method (FEM) are compared with experimental tests. So, the results prove the applicability of presenting the approach for the identification of waste metal by the eddy currents.

Keywords: 

recovery, metals, inverse problem, eddy current, magnetic

1. Introduction
2. Materials and Methods
3. Experimental Results and Discussions
4. Numerical Simulation and Discusions
5. Validation Model
6. Conclusion
  References

[1] Gramatyka P, Nowosielski R, Sakiewicz P. (2007). Recycling of waste electrical and electronic equipment. Journal of Achievements in Materials and Manufacturing Engineering 1: 535-538.

[2] Ivert LK, Hanne LR, Fråne A, Ljungkvist H. (2015). The role of the WEEE collection and recycling system setup on environmental, economic and socio-economic performance, Report number: B2243. Swedish Environmental Research Institute, Sweden.

[3] Bizzo WA, Renata FA, de Andrade VF. (2014). Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials 16 7(6): 4555-4566.

[4] Li JZ, Shrivastava P, Gao Z, Zhang HC. (2004). Printed circuit board recycling: a state-of-the-art survey. IEEE Transactions on Electronics Packaging Manufacturing 27: 33–42.

[5] Sobral LGS. (2012). Urban mining: the way out for recycling non-renewable metal values. Rio de Janeiro: CETEM/MCTI 57. (Série Tecnologia Ambiental, 62) 

[6] Williams JAS. (2006). A review of electronics demanufacturing processes. Resources, Conservation and Recycling 47: 195–208.

[7] Islam AANE, Youcef AAR, Bihan YL, Krebs G, Zouaoui D. (2014). Simulation and experiments on electromagnetic induction separator by excitation variation. Australian Journal of Basic and Applied Sciences 8: 351-357.

[8] Cui JR, Forssberg E. (2003). Mechanical recycling of waste electric and electronic equipment. Journal of Hazardous Materials B 99: 243-263.

[9] Raval NK, Ozap MP. (2014). E-waste problem - present status, challenges faced in its management and future: a study of Gujarat region. International Journal of Research in Humanities & Social Sciences 2. 

[10] Gabi Y. (2012). Modélisation FEM du système de contrôle non destructif 3MA en ligne de production des aciers dual phase. Ph.D. diss. Grenoble University.

[11] Hamia R. (2011). Performances et apports des capteurs magnétiques très haute sensibilité aux systèmes de contrôle non destructif par courant de foucault. Ph.D thesis. Caen University.

[12] Tareq B. (2014). Développement de methodes rapides pour la resolution des problemes directes dans les systemes de cnd par courants de foucault. Ph.D thesis. Hadj Lakhdar Batna University.

[13] Javier GM, Ernesto VS. (2011). Non-destructive techniques based on eddy current testing. Sensors Journal 11: 2525-2565.

[14] Henderson M, Philip T, Nail B, Etheridge J, Puranik G. (1997). A non-contact method for measuring thermal conductivity and thermal diffusivity for use in a neural network to recognize waste material diagnostic instrumentation and analysis laboratory (DIAL). Diagnostic Instrumentation and Analysis Laboratory Drawer MM Mississippi State, MS 39762.

[15] Trillon A. (2010). Reconstruction de défauts à partir de données issues de capteurs à courants de Foucault avec modèle direct différentiel. Ph.D thesis. Nantes University. 

[16] Thomas V. (2010). Système multi-capteurs et traitement des signaux associé pour l’imagerie par courants de Foucault de pièces aéronautiques. Ph.D thesis. Cachan University.

[17] Santandrea L, Le Bihan Y. (2010). Using COMSOL multiphysics in an eddy current non-destructive testing context. Excerpt from the Proceedings of the COMSOL Conference, Paris, France.

[18] Berveiller M. (2005). Eléments finis stochastiques: approches intrusive et non intrusive pour des analyses de fiabilité. Ph.D thesis. Blaise Pascal University and French Institute of Advanced Mechanics.

[19] Johan S, Shantha K, Siti S. (2012). A review on printed circuit board recycling technology. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 3(1): 12-18.

[20] Mesina MB, de Jong TPR, Dalmijn WL. (2003). Improvements in separation of non-ferrous scrap metals using an electromagnetic sensor. Physical Separation in Science and Engineering 12: 87-101.

[21] Ruan JJ, Xu ZM. (2011). A new model of repulsive force in eddy current separation for recovering waste toner cartridges. Journal of Hazardous Materials 192: 307-313.

[22] Maraspina F, Bevilacquaa P, Remb P. (2004). Modelling the throw of metals and nonmetals in eddy current separations. Int. J. Miner. Process. 73: 1–11.

[23] Cyril RAVAT. (2008). Conception de multicapteurs à courants de Foucault et inversion des signaux associés pour le contrôle non destructif. Ph.D thesis. University of Paris-Sud.