First Principles Study of the Structural, Elastic and Thermodynamic Properties of the Cubic Perovskite-Type SrTiO3

First Principles Study of the Structural, Elastic and Thermodynamic Properties of the Cubic Perovskite-Type SrTiO3

Benyettou Samia* Saib Salima

Laboratory of Materials Physics and its Applications, University of M`sila, 28000 M`sila, Algeria

Corresponding Author Email: 
samia.benyettou77@gmail.com
Page: 
230-235
|
DOI: 
https://doi.org/10.18280/mmc_b.870403
Received: 
17 June 2018
|
Accepted: 
15 October 2018
|
Published: 
31 December 2018
| Citation

OPEN ACCESS

Abstract: 

Structural, elastic modulus for the SrTiO3 crystal in the cubic (Pm3m) phase were calculated by the first-principles calculations using the plane wave pseudo potential calculations (PP-PW) im-plemented in the ABINIT package within density functional theory and the generalized gradient approximation based on the Perdew–Burke–Ernzerhof (PBE-GGA) functional. The thermody-namic properties have been investigated by using the GIBBS program, which is based on the qua-si-harmonic model of Debye.

The structural parameters (lattice constant, bulk modulus), mechanical (elastic constant, Young’s Modulus, shear modulus and Poisson’s ratio), thermodynamic properties (the variation of the volume, bulk modulus and thermal expansion coefficient, heat capacity at constant volume CV, heat capacity at constant pressure CP and entropy) as function of temperature of the SrTiO3 cubic phase, are studied. The results of our simulations are discussed and compared to experi-mental and theoretical results when available.

Keywords: 

density fonctional theory, perovskite oxides, SrTiO3, first principles calculation, elastic constant, thermodynamic properties

1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusion
  References

[1] Lines ME, Glass AM. (1977). Principles and Applications of Ferroelectrics and Related Materials, Clarendon Pres, Oxford. 31(9). http://doi.org/10.1063/1.2995188

[2] Xu Y. (1991). Ferroelectric Materials and Their Applications, Elsevier Science Publishers B.V, Am-sterdam 56(10S): 10P001. http://doi.org/10.7567/JJAP.56.10P001

[3] Gonze X, Amadon B, Anglade PM, Beuken JM. (2009). First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180(12): 2582-2615 http://doi.org/10.1016/j.cpc.2009.07.007

[4] Hohenberg P, Kohn W. (1964) Inhomogeneous electron gas. Phys. Rev 22(8): 809-811. http://doi.org/10.1007/s12045-017-0529-3

[5] Teter M. (1993) Additional condition for transferability in pseudopotentials. Phys. Rev 48(8): 5031-5041. http://dx.doi.org/10.1103/PhysRevB.48.5031

[6] Monkhortst HJ, Pack JD. (1976). Special points for Brillouin-zone integrations. Phys. Rev. 13(12): 5188-5192. http://dx.doi.org/10.1103/PhysRevB.13.5188

[7] Birch F. (1947). Finite elastic strain of cubic crystals. Phys Rev 71(11): 809-824. http://dx.doi.org/10.1103/PhysRev.71.809

[8] Lopuszyński M, Majewski JA. (2007). Ab initio calculations of third-order elastic constants and related properties for selected semiconductors. Phys. Rev 76(4). http://dx.doi.org/10.1103/PhysRevB.76.045202

[9] Bouarissa N, Saib S. (2013). Elastic modulus, optical phonon modes and polaron properties in Al1−xBxN alloys. Current Appl. 13(3): 493-499. http://dx.doi.org/10.1016/j.cap.2012.09.021

[10] Maradudin AA, Montroll EW, Weiss GH, Ipatova IP. (1971). Theory of lattice dynamics in the harmonic approximation. Academic Press, New York.

[11]  Blanco MA, Francisco E, Luaña V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun 158(57): 57-72 http://doi.org/10.1016/j.comphy.2003.12.001.

[12] Florez M, Recio JM, Francisco E, Blanco MA, Pendas AM. (2002). First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys. Rev 66(14). http://doi.org/10.1103/PhysRevB.66.144112

[13] Murnaghan FD. (1994). The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci 30(9): 244-247. http://doi.org/10.1073/pnas.30.9.244

[14] Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Schmidt PC. (2003). Ab-initio calculation of the elastic constants and thermal expansion coefficients of laves phases. Intermetallics 11(1): 23-32. http://doi.org/10.1016/S0966-9795(02)00127-9

[15] Mattesini M, Ahuja R, Johansson B. (2003). Cubic Hf3N4 and Zr3N4: A class of hard materials. Phys. Rev, 68(18).

[16] Degtyareva EV, Verba LI, Gulko Net al., Inorg mater,13, 853 (1977). http://doi.org/10.1103/PhysRevB.68.184108

[17] Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J. (2007). Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev, 76(5). 

[18] Haines J, Leger JM, Bocquillon G. (2001). Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res, 31(1): 1-23. http://doi.org/10.1146/annurev.matsci.31.1.1

[19] Vaitheeswaran G, Kanchana V, Kumar RS, Cornelius AL, Nicol MF, Savane A, Delin A, Johansson B. (2007). High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3. Phys. Rev 76(1). http://doi.org/ 10.1103/PhysRevB.76.014107

[20] Pugh SF. (1954). Philos. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Mag 45: 823. http://doi.org/10.1080/14786440808520496

[21] Eithiraj RD, Jaiganesh G, Kalpana G, Rajagopalan M. (2007). First‐principles study of electronic structure and ground‐state properties of alkali‐metal sulfides – Li2S, Na2S, K2S and Rb2S, Phys. Status Solidi 244(4): 1337-1346. http://doi.org/10.1002/pssb.200642506

[22] Boudali A, Khodja MD, Amrani B, Bourbie D, Amara K, Abada A. (2009). First-principles study of structural, elastic, electronic, and thermal properties of SrTiO3 perovskite cubic. Physics Letters A 45(4): 1068-1072. http://doi.org/10.1016/j.commatsci.2009.01.011

[23] Sakhya AP. (2015). Electronic structure and elastic properties of ATiO3 (A = Ba, Sr, Ca) perovskites: A first principles study. Indian Journal of Pure and Applied Physics 53(2): 102-109. http://hdl.handle.net/123456789/30513

[24] Mitsui T, Nomura S. (1982). Numerical data and functional relations in science and technology-crystal and solid state physics. Springer-Verlag, Berlin.

[25] Nakagawa N, Hwang HY, Muller DA, (2006). Why some interfaces cannot be sharp. Nature Mater. 5(3): 204. http://doi.org/10.1038/nmat1569

[26] Fiscler M, Bonello B, Polian A, Leger JM. (1987). In Provrkite: A Structure of Great Interest to Geophysics and Materials Science. A. Navrotsky and D.J. Weidner (eds), AGU, Washington DC, 125-139.

[27] Fischer GJ, Wang Z, Karato SI. (1993). Elasticity of CaTiO3, SrTiO3 and BaTiO3 perovskites up to 3.0 Gpa: The effect of crystallographic structure. Phys. Chem. Minerals 20(2): 97-103. http://doi.org/10.1007/BF00207202

[28] Bell RO, Rupprecht G. (1963). Elastic constants of strontium titanate. Phys. Rev. 129: 90. 

[29] Landolt B. (2002). Numerical data and functional relationships in science and technology - new series, ornstein Group III Condensed Matter. 36, subvol V (Berlin: Springer) chapter 1A (Simple Perovskyte-Type Oxides), 116-147.

[30] Mehl MJ. (1993). Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev, 47(5). http://doi.org/10.1103/PhysRevB.47.2493