PVF-PPy Composite as Support Material for Facile Synthesis of Pt@PVF-PPy Catalyst and Its Electrocatalytic Activity Towards Formic Acid Oxidation

PVF-PPy Composite as Support Material for Facile Synthesis of Pt@PVF-PPy Catalyst and Its Electrocatalytic Activity Towards Formic Acid Oxidation

Mutlu Sönmez Çelebi Ayşe Nur Yılmaz

Faculty of Science and Arts, Department of Chemistry, Ordu University, 52200, Ordu, Turkey

Corresponding Author Email: 
mutlucelebi@odu.edu.tr
Page: 
157-162
|
DOI: 
https://doi.org/10.14447/jnmes.v21i3.502
Received: 
January 30, 2018
| |
Accepted: 
April 27, 2018
| | Citation
Abstract: 

Preparation and characterization of a Pt-based catalyst supported on poly(vinylferrocenium)-poly(pyyrole) conducting polymer composite (Pt@PVF-PPy) was described for electrocatalytic oxidation of formic acid. Pt precursor was aqueous solution of K2PtCl4 and electrochemical and chemical reduction methods were compared for optimum catalyst performance. Other experimental parameters such as polymer film thickness and Pt loading were also optimized with respect to the formic acid oxidation peak current values. Scanning electron microscopy, cyclic voltammetry and chronoamperometry methods were used for physical and electrochemical characterization of the catalyst system. When compared with similar Pt-based conducting polymer supported catalyst systems, the Pt@PVF-PPy catalyst revealed superior performance for formic acid electrooxidation.

Keywords: 

Pt particles, Poly(vinylferrocenium), Poly(pyyrole), Formic acid electrooxidation, Supported catalyst

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgment

This work was supported by the Scientific Research Projects Coordination Department of Ordu University (ODUBAP) with grant number: TF-1616.

  References

[1] W. Chen, H. Weimin, D. Li, S. Chen, and Z. Dai, J New Mat. Elect. Sys., 221, 205 (2017).

[2] J. Upadhyay and A. Kumar in Conducting Polymer Hybrids, Edited by V. Kumar, S. Kalia and H.C. Swart, Springer Interna-tional Publishing, Switzerland, p. 81 (2017).

[3] E. Akgül, A. Gülce, and H. Gülce, J. Electroanal. Chem., 668, 73 (2012).

[4] M. S. Çelebi, K. Pekmez, H. Özyörük, and A. Yıldız, J. Power Sources, 183, 8 (2008).

[5] P. E. Erden, C. Kaçar, F. Öztürk, and E. Kılıç, Talanta, 134, 488 (2015).

[6] M. S. Çelebi in Advanced Electrode Materials, Edited by A. Tiwari, F. Kuralay, and L. Uzun, Wiley-VCH, Weinheim, p. 397 (2016).

[7] E. Antolini, Appl. Catal. B Environ., 88, 1 (2009).

[8] S. Sharma and B. G. Pollet, J. Power Sources, 208, 96 (2012).

[9] F. Yin, D. Wang, Z. Zhang, C. Zhang, and Y. Zhang, Mater. Lett., 207, 225 (2017).

[10] Z. Bai, Q. Zhang, J. Lv, S. Chao, L. Yang, and J. Qiao, Electro-chim. Acta, 177, 107 (2015).

[11] I. Sapurina, J. Stejskal, I. Šedenková, M. Trchová, J. Kovárová, J. Hromádková, J. Kopecká, M. Cieslar, A. A. El-Nasr, M. M. Ayad, Synth. Met., 214, 14 (2016).

[12] H. G. Lemos, S. F. Santos, and E. C. Venancio, Synth. Met., 203, 22 (2015).

[13] K. L. Nagashree and M. F. Ahmed, Synth. Met., 158, 610 (2008).

[14] J. Shi, D. J. Guo, Z. Wang, and H. L. Li, J. Solid State Electro-chem., 9, 634 (2005).

[15] Z. Z. Zhu, Z. Wang, and H. L. Li, Appl. Surf. Sci., 254, 2934 (2008).

[16] W. Zhou, J. Xu, Y. Du, and P. Yang, Int. J. Hydrogen Energy, 36, 1903 (2011).

[17] R. Yue, F. Jiang, Y. Du, J. Xu, and P. Yang, Electrochim. Acta, 77, 29 (2012).

[18] W. Zhou, Y. Du, H. Zhang, J. Xu, and P. Yang, Electrochim. Acta, 55, 2911 (2010).

[19] C. Te Hsieh, H. T. Hsiao, D. Y. Tzou, P. Y. Yu, P. Y. Chen, and B. S. Jang, Mater. Chem. Phys., 149, 359 (2015).

[20] X. Zhong, Z. Wang, Y. Huang, Y. Yu, Q. Feng, and Q. Li, Int. J. Hydrogen Energy, 39, 15920 (2014).

[21] A. Sayadi and P. G. Pickup, Russ. J. Electrochem., 53, 1054 (2017).

[22] Y. Yıldız, H. Pamuk, Ö. Karatepe, Z. Dasdelen, and F. Sen, RSC Adv., 6, 32858 (2016).

[23] M. R. A. Ramírez, M. A. del Valle, F. Armijo, F. R. Díaz, M. Angélica Pardo, and E. Ortega, J. Appl. Polym. Sci., 134, 1 (2017).

[24] M. A. del Valle, R. Salgado, and F. Armijo, Int. J. Electro-chem. Sci., 9, 1557 (2014).

[25] I. M. Al-Akraa, A. M. Mohammad, M. S. El-Deab, and B. E. El-Anadouli, Int. J. Hydrogen Energy, 40, 1789 (2015).

[26] B. Habibi and E. Dadashpour, Int. J. Hydrogen Energy, 38, 5425 (2013).

[27] J. B. Xu, T. S. Zhao, and Z. X. Liang, J. Phys. Chem. C, 112, 17362 (2008).

[28] S. Zhang, Y. Shao, H. Liao, J. Liu, I. A. Aksay, G. Yin, and Y. Lin, Chem. Mater., 23, 1079 (2011).

[29] Y. Chen, Y. Zhou, Y. Tang, and T. Lu, J. Power Sources, 195, 4129 (2010).

[30] W. Tian, X. Mao, P. Brown, G. C. Rutledge, and T. A. Hatton, Adv. Funct. Mater., 25, 4803 (2015).

[31] M. Sönmez Çelebi and K. Pekmez, Hacettepe J. Biol. & Chem., 45, 351 (2017).

[32] Fulya Canlı, Amperometric Determination of Ascorbic Acid (Vitamin C) by Poly(vinylferrocene)-Polypyrrole Modified Platinum Electrode, MSc Thesis, Hacettepe University (2005).

[33] H. Gülce, H. Özyorük, and A. Yıldız, Electroanalysis, 7, 178 (1995).

[34] M. Sönmez Çelebi, H. Özyörük, A. Yildiz, and S. Abaci, Ta-lanta, 78, 405 (2009).