Dye-sensitized Solar Cell utilizing Gold Doped Reduced Graphene Oxide Films Counter Electrode

Dye-sensitized Solar Cell utilizing Gold Doped Reduced Graphene Oxide Films Counter Electrode

M. Y.A. Rahman A. S. Sulaimanh A. A. Umar

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,43600, Bangi, Selangor, Malaysia

Corresponding Author Email: 
October 02, 2017
March 07, 2018
02 May 2018
| Citation

This work is concerned with the use of gold doped reduced graphene oxide (rGO) films as counter electrode in a dye-sensitized solar cell (DSSC). The effect of gold content on the photovoltaic parameters of the device has been studied. The samples are crystalline, indicated by the presence of rGO phase. It was found that the short-circuit current density (JSC) decreases with the increase in gold content. The DSSC utilizing the sample prepared using 2.0 wt.% gold demonstrated the highest JSC, Voc and η of 0.989 mA cm-2, 0.692 V and 0.175%, respectively. The highest efficiency (η) of the device is due to the lowest leak current and charge transfer resistance (Rct).


counter electrode, dye-sensitized solar cell, doping, gold, graphene oxide

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments

This work was supported by Universiti Kebangsaan Malaysia (UKM) under research grant DLP 2015-003 and GUP-2016-013.


[1] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, Hong Li, W. Song, L. Chen, Q. Meng, Electrochem. Commun., 9, 596 (2007).

[2] J.G. Nam, Y.J. Park, B.S. Kim, J.S. Lee, Scripta Materialia., 62, 148 (2010).

[3] H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K-H.Hung, B. Wei, Nanotechnology, 19, 465204 (5pp) (2008).

[4] M.Y.A. Rahman, M.M. Salleh, I.A. Talib, M. Yahaya, Ionics, 11, 275 (2005).

[5] J. D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, ACS Nano., 4, 6203 (2010).

[6] D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Carbon, 49, 5382 (2011).

[7] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y.H. Hu, Angew. Chem. Int. Ed., 52, 9210 (2013).

[8] L. Kavan, Top Curr. Chem., 348, 53 (2014).

[9] L. Kavan, J.-H. Yum, M. Grätzel, Electrochim. Acta, 128, 349 (2014).

[10] M. Janani, P. Srikrishnarka, S.V. Nair, A.S. Nair, J. Mater. Chem. A., 3, 17914 (2015).

[11] L. Kavan, P. Liska, S.M. Zakeeruddin, M. Grätzel, Electro-chim. Acta, 195, 34 (2016).

[12] M.Y.A. Rahman, A.S. Sulaiman, A.A. Umar, M.M. Salleh, J. Mater. Sci.: Mater. Electron., 28, 1674 (2017).

[13] L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, J. Power Sources, 324, 412 (2016).

[14] Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed., 51, 12124 (2012).

[15] M.J. Ju,,J.C. Kim,, H.-J. Choi, ,I.T. Choi, S.G. Kim, K. Lim, J. Ko, J.-J. Lee, I.-Y. Jeon, J.-B. Baek, H. K. Kim, ACS Nano, 6, 5243 (2013).

[16] Z. Wang, P. Li, Y. Chen, J. He, J. Liu, W. Zhang, Y. Li, J. Power Sources, 263, 246 (2014).

[17] M.I.A. Umar, C.C. Yap, R. Awang, A.A. Umar, M.M. Salleh, M. Yahaya, Mater. Lett., 106, 200 (2013).

[18] L. Roza, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, Adv. Mater. Res., 364, 393 (2012).

[19] H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Sol. Energy Mater. Sol. Cells, 95, 323 (2011).