Oxygen Reduction Reaction on Pt-ZrO2/C during the Alcohol Crossover in Experimental Direct Alcohol Fuel Cells

Oxygen Reduction Reaction on Pt-ZrO2/C during the Alcohol Crossover in Experimental Direct Alcohol Fuel Cells

M. A. García
F. Ginez
S. A. Gamboa*

Universidad Politécnica del Estado de Guerrero. Carretera Federal Iguala-Taxco Km 105 Puente Campuzano,40321. Taxco de Alarcón Guerrero, México.

Instituto de Energías Renovables, Universidad Nacional Autónoma de México. Privada Xochicalco s/n, Centro, 62580, Temixco, Morelos, México.

Corresponding Author Email: 
sags@ier.unam.mx
Page: 
57-62
|
DOI: 
https://doi.org/10.14447/jnmes.v21i1.524
Received: 
1 November 2017
|
Accepted: 
20 January 2018
|
Published: 
18 April 2018
| Citation
Abstract: 

Pt–ZrO2/C composite was synthesized by chemical reduction process. ZrO2 precursor was obtained by sol-gel at room temperature. The synthesis allowed the formation of Pt-ZrO2/C nanoparticles. The nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) techniques. The electrochemical experiments were carried out for investigating the electro-catalytic properties of the synthesized composite to promote the cathodic reaction in direct alcohol fuel cells (DAFC). The results indicated that Pt-ZrO2/C showed more tolerance than Pt/C based electrocatalyst to the presence of methanol or ethanol (due to alcohol crossover) during the oxygen reduction reaction (ORR) in direct alcohol fuel cells. The experimental results indicated that the ORR on Pt-ZrO2/C composite was predominant by the four electron transfer mechanism and first order reaction. The Pt-ZrO2/C based electrocatalyst showed adequate performance to carry out the ORR in experimental direct alcohol fuel cells operating at room temperature. The results revealed that Pt-ZrO2/C composite could be considered as a suitable candidate for reducing oxygen on the cathode of experimental DAFCs.

Keywords: 

oxygen reduction reaction, alcohol fuel cell, Pt-ZrO, nanoparticles

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] H. Huang, D. Sun, X. Wang, J. Phys. Chem. C, 115, 19405 (2011).

[2] S. García-Rodríguez, F. Somodi, I. Borbáth, J.L. Margitfalvi, M.A. Peña, J.L.G. Fierro, S. Rojas, Appl. Catal. B: Environ., 91, 83 (2009).

[3] S. Song, J. Liu, J. Shi, H. Liu, V. Maragou, Y. Wang, P. Tsiakaras, Appl. Catal. B: Environ., 103, 287 (2011).

[4] E. Antolini, Appl. Catal. B: Environ., 88, 1 (2009).

[5] J.P.I. de Souza, S.L. Queiroz, K. Bergamaski, E.R. Gonzalez, F.C. Nart, J. Phys. Chem. B, 106, 9825 (2002).

[6] M. K. Jeon, C. H. Lee, G. I. Park and K. H. Kang, J. Power Sources, 216, 400 (2012).

[7] E. Antolini, J. Power Sources, 170, 1 (2007).

[8] L. Zhang, L. Wang, C. M. B. Holt, B. Zahiri, Z. Li, K. Malek, T. Navessin, M. H. Eikerling and D. Mitlin, Energy Environ. Sci., 5, 6156 (2012).

[9] H.A. Gasteiger, N.M. Markoviæ, Science, 324, 48 (2009).

[10] V. R. Stamenkovic, B. Fowler, B. S. Mun, G.Wang, P. N. Ross, C. A. Lucas, N. M. Markoviæ, Science, 315, 493 (2007).

[11] F.Y. Cheng, J. Chen, Chem. Soc. Rev., 41, 2172 (2012).

[12] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem., 3, 546 (2011).

[13] J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J Phys. Chem. B, 108, 17886 (2004).

[14] N.M. Markovic, P.N. Ross, Surf. Sci. Rep., 45, 117 (2002).

[15] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B: Environ., 56, 9 (2005).

[16] H. Yano, M. Kataoka, H. Yamashita, H. Uchida and M. Watanabe, Langmuir, 23, 6438 (2007).

[17] S. Takenaka, A. Hirata, E. Tanabe, H. Matsune, M. Kishida, J. Catal., 274, 228 (2010).

[18] S.I. Choi, R. Choi, S.W. Han, J.T. Park, Chem. Commun., 46, 4950 (2010).

[19] N. Wakabayashi, M. Takeichi, H. Uchida, M. Watanabe, J. Phys. Chem. B, 109, 5836 (2005).

[20] W. Li, Q. Xin, Y. Yan, Int. J. Hydrogen Energy, 35, 2530 (2010).

[21] H. Yang, W. Vogel, C. Lamy, N. Alonso-Vante, J. Phys. Chem. B, 108, 11024 (2004).

[22] Y. Xu, S.X. Hou, Y. Liu, Y. Zhang, H. Wang, B. Zhang, Chem. Commun., 48, 2665 (2012).

[23] R. Ohnishi, Y. Takahashi, A. Takagaki, J. Kubota, K. Domen, Chemistry Letters, 37, 838 (2008).

[24] K. Ota, Y. Ohgi, K.D. Nam, K. Matsuzawa, S. Mitsushima, A. Ishihara, J. Power Sources, 196, 5256 (2011).

[25] M. Chisaka, T. Iijima, T. Yaguchi, Y. Sakurai, Electrochimica Acta, 56, 4581 (2011).

[26] W. Zhou, L. Ge, Z. G. Chen, F. Liang, H. Y. Xu, J. Motuzas, A. Julbe, Z. H. Zhu, Chem. Mater., 23, 4193 (2011).

[27] D. J. Guo, X. P. Qiu, W. T. Zhu, L. Q. Chen, Appl. Catal. B: Environ., 89, 597 (2009).

[28] A. Chandra Bose, R. Ramamoorthy, S. Ramasamy, Mater. Lett., 44, 203 (2000).

[29] H. Song, X. Qiu , F. Li , Appl. Catal. A: Gen., 364, 1 (2009).

[30] J.M. Pigos, C.J. Brooks, G. Jacobs, B.H. Davis, Appl. Catal. A: Gen., 328, 14 (2007).

[31] S. Mostafa, Jason R. Croy, H. Heinrich, B. Roldan Cuenya, Appl. Catal. A: Gen., 366, 353 (2009).