Thermally Deposited Sb2S3: Bi Thin Films for Solar Cell Absorber

Thermally Deposited Sb2S3: Bi Thin Films for Solar Cell Absorber

Durai Chella Priya Daniel Thanabalan Johnson Henry Kannusamy Mohanraj* Ganesan Sivakumar Sethuramachandran Thanikaikarasan Pathiyamattom Joseph Sebastian

Department of Physics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India

CISL, Department of Physics, Annamalai University, Chidambaram - 608 002, Tamil Nadu, Indian

Centre for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152, Tamil Nadu, India

4Instituto de Energias Renovables, UNAM 62580, Temixco, Morelos, Mexico

Corresponding Author Email: 
kmohanraj.msu@gmail.com; mohanraj@msuniv.ac.in
Page: 
37-42
|
DOI: 
https://doi.org/10.14447/jnmes.v21i1.520
Received: 
13 October 2017
|
Accepted: 
20 December 2017
|
Published: 
17 April 2018
| Citation
Abstract: 

In recent years there has been growing interest in the materials suitable for real time storage application. Sb2S3 is a prospective material in this regard due to good photoconductivity. In this contest, thin films of Sb2Sand Bi3+ doped Sb2S3 were deposited onto the transparent glass substrate by thermal evaporation method. The structural, optical and electrical properties were investigated by XRD, UV-Visible, Photoluminescence, and Impedance spectroscopic techniques. The XRD patterns confirm the orthorhombic crystal structured Sb2Sand the inclusion of Bi3+ ions in the crystal system. UV-Visible analysis exhibited wide optical absorption in the visible region for both Sb2Sand Bi3+ doped films and their band gap energy was found to be 1.60 eV and 1.55 eV respectively. The photoluminescence spectra showed a strong emission at 361nm. The value of capacitance, dielectric constant and real part of impedance decreases with increasing frequency for both the samples.

Keywords: 

antimony sulfide, bismuth, thin film, dielectric

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
5. Acknolowdgement

The authors are thankful to the UGC-SAP, New Delhi for providing the financial support to the Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.

  References

[1] F. Aousgi, M. Kanzari, Current Applied Physics, 13, 262, (2013).

[2] S. Srikanth, N. Suriyanarayanan, S. Prabahar, V. Balasubramanian, D. Kathirvel, Opto Electronics and Advanced Materials- Rapid Communications, 4, 2057, (2010).

[3] N. Tigau, V. Ciupina, G. Prodan, G. I. Rusu, C. Gheorghies, E. Vasile, Journal of Optoelectronics and Advanced Materials 6, 211, (2004).

[4] A.U. Ubale, V.P. Deshpande, Y.P. Shinde, D.P. Gulwade, chalcogenide letter 7, 101, (2010).

[5] N. Tigau, V. Ciupina, G. I. Rusu, G. Prodan, E. Vasile, Rom. J. Phys, 50, 859, (2005).

[6] Siham. M. Salim, M.B. Seddek, A.M. Salem and Islam, Journal of Applied Science Research, 6, 1352, (2010).

[7] N.J. Mathew, R. Oommen, P.U. Rajalakshmi, C. Sanjeeviraja, Chalcogenide Letters 8, 441, (2011).

[8] Saima Mushtaq, Bushra Ismail, Muhammad Raheel, Aurang Zeb, Natural Science, 8, 33, (2016).

[9] Saima Mushtaq, Bushra Ismail, Misbah Aurang Zeb, N.J. Suthan Kissinger, Aurang Zeb, Journal of Alloys and Compounds, 632, 723, (2015).

[10] Emma Cardenas, A. Arato, E. Perez-Tijerina, T.K. DasRoy, G. AlanCastillo, B. Krishnan, Solar Energy Materials & Solar Cells, 93, 33, (2009).

[11] Nordin Sabli, Zainal Abidin Talib, Wan Mahmood Mat Yunus, Zulkarnain Zainal, Hikmat S. Hilal, Masatoshi Fujii, Materials Science Forum, 756, 273, (2013).

[12] R. Oommen, N.J. Mathew, P.U. Rajalakshmi, Journal Of Ovonic Research, 6, 259, (2010).

[13] N. Tigau, Rom, J..Phys. 53, 209, (2008).

[14] Subhash Chander, M.S. Dhaka, Adv. Mater. Lett., 6(10), 907, (2015).

[15] Salah Abdul-Jabbar Jassim, Abubaker A. Rashid Ali Zumaila, Gassan Abdella Ali Al Waly, Results in Physics, 3, 173, (2013).

[16] N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani, A.R. Balu, Materials Science-Poland, 33(4), 774, (2015).

[17] F. Aousgi, M. Kanzari, Journal of Optoelectronics and Advanced Materials, 12, 227, (2010).

[18] B. Ismail, S. Mushtaq, R. A. Khan, A. M. Khan, A. Zeb, A. R. Khan, Optik - International Journal for Light and Electron Optics, 125, 6418, (2014).

[19] N. Tigau, Cryst.Res. Technol., 42, 281, (2007).

[20] P.U. Asogwa, S.C. Ezugwu, F.I. Ezema, R.U. Osuji, Chalcogenide Letters, 6, 287, (2009).

[21] F. Capezzuto, G. Carotenuto, F. Antolini, E. Burresi, M. Palomba, P. Perlo, Express Polymer Letters, 3, 219, (2009).