Controlled Synthesis of ZnO Nanostructures by Electrodeposition without Any Pretreatment and Additive Regent

Controlled Synthesis of ZnO Nanostructures by Electrodeposition without Any Pretreatment and Additive Regent

Xin Xi Chao Yang Lei Liu ShiChao Zhu Haicheng Cao Lixia Zhao*

Semiconductor Lighting Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, P. R. China

College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Corresponding Author Email: 
lxzhao@semi.ac.cn
Page: 
175-181
|
DOI: 
https://doi.org/10.14447/jnmes.v20i4.270
Received: 
29 April 2017
| |
Accepted: 
30 July 2017
| | Citation
Abstract: 

ZnO nanostructures have been fabricated using electrodeposition method without any additive reagent and nucleation-layer. The influences of the applied voltage, temperature, electrolyte concentration, and time on the nanostructures of ZnO have been investigated using cyclic voltammety (CV), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The result shows that the 1-dimensional (1D) nanostructures tend to be formed at lower voltage and electrolyte concentration, while 2-dimentional (2D) nanostructures can be easily obtained at higher voltage and concentration. Although increasing temperature is helpful to grow 1D nanostructures, but excessive high temperature will destroy the ZnO nanostructures because of the high solubility of ZnO. Furthermore, we reveal the mechanism of the formation of ZnO nanostructures mainly depends on the competition between the hydroxylation and dehydration reaction. Our work is helpful for developing the photocatalytic and photodetection applications using different ZnO nanostructures.

Keywords: 

ZnO, nanostructure, electrodeposition

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] A. Simimol, P. Chowdhury, S. Ghosh, H.C. Barshilia, Electrochimica Acta, 90, 514 (2013).

[2] J. Huang, M.M. Morshed, Z. Zuo, J. Liu, Applied Physics Letters, 104, 131107 (2014).

[3] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D. Aplin, J. Park, X. Bao, Y.H. Lo, D. Wang, Nano Letters, 7, 1003 (2007).

[4] P. Rai, S. Raj, K.J. Ko, K.-K. Park, Y.T. Yu, Sensors and Actuators B: Chemical, 178, 107 (2013).

[5] N.R. Farley, C.R. Staddon, L. Zhao, K.W. Edmonds, B.L. Gallagher, D.H. Gregory, Journal of Materials Chemistry, 14, 1087 (2004).

[6] S. Shinde, C. Bhosale, K. Rajpure, Journal of Semiconductors, 34, 043002 (2013).

[7] M.Y.A. Rahman, A. Umar, R. Taslim, M.M. Salleh, Electrochimica Acta, 88, 639 (2013).

[8] M.R. Khajavi, D.J. Blackwood, G. Cabanero, R. Tena-Zaera, Electrochimica Acta, 69, 181 (2012).

[9] Y.H. Ko, M.S. Kim, J.S. Yu, Applied Surface Science, 259, 99 (2012).

[10]G. Nagaraju, Y.H. Ko, J.S. Yu, Materials Chemistry and Physics, 149, 393 (2015).

[11]Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N. Ashfold, Advanced materials, 17, 2477 (2005).

[12]K. Zarebska, M. Kwiatkowski, M. Gniadek, M. Skompska, Electrochimica Acta, 98, 255 (2013).

[13]D. Pradhan, K.T. Leung, Langmuir, 24, 9707 (2008).

[14]B. Fang, C. Zhang, W. Zhang, G. Wang, Electrochimica Acta, 55, 178 (2009).

[15]X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science, 303, 1348 (2004).

[16]E.S. Jang, J.H. Won, Y.W. Kim, X. Chen, J.H. Choy, Cryst. Eng. Comm., 12, 3467 (2010).

[17]J.C. Deinert, D. Wegkamp, M. Meyer, C. Richter, M. Wolf, J. Stähler, Physical review letters, 113, 057602 (2014).

[18]B. Cao, W. Cai, The Journal of Physical Chemistry C, 112, 680 (2008).

[19]P.X. Gao, C.S. Lao, Y. Ding, Z.L. Wang, Advanced Functional Materials, 16, 53 (2006).

[20]P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Advanced Functional Materials, 12, 323 (2002).

[21]S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, A. Shah, Solar Energy Materials and Solar Cells, 90, 2960 (2006).

[22]M. Ying, W. Cheng, X. Wang, B. Liao, X. Zhang, Z. Mei, X. Du, S.M. Heald, H.J. Blythe, A.M. Fox, Materials Letters, 144, 12 (2015).

[23]Y. Liu, C. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, Journal of Electronic Materials, 29, 69 (2000).

[24]S. Shinde, G. Patil, D. Kajale, V. Gaikwad, G. Jain, Journal of Alloys and Compounds, 528, 109 (2012).

[25]T. Shimogaki, M. Takahashi, M. Yamasaki, T. Fukuda, M. Higashihata, H. Ikenoue, D. Nakamura, T. Okada, Journal of Semiconductors, 37, 023001 (2016).

[26]X. Bai, L. Yi, D.L. Liu, E.Y. Nie, C.L. Sun, H.H. Feng, J.J. Xu, Y. Jin, Z.F. Jiao, X.S. Sun, Electrodeposition from ZnO nano-rods to nano-sheets with only zinc nitrate electrolyte and its photoluminescence, Applied Surface Science 257 (2011) 10317-10321.

[27] Y. Lin, J.Y. Yang, X.Y. Zhou, Controlled synthesis of oriented ZnO nanorod arrays by seed-layer-free electrochemical deposition, Applied Surface Science 258 (2011) 1491-1494.

[28] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, Morphological control of ZnO nanostructures by electrodeposition, J Phys Chem B 109 (2005) 13519-13522.

[29] D. Pradhan, K. Leung, Vertical Growth of Two-Dimensional Zinc Oxide Nanostructures on ITO-Coated Glass: Effects of Deposition Temperature and Deposition Time, The Journal of Physical Chemistry C 112 (2008) 1357-1364.

[30] S. Sun, S. Jiao, K. Zhang, D. Wang, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo, L. Zhao, Journal of Crystal Growth, 359, 15 (2012).

[31]N. Orhan, M. Baykul, Solid-State Electronics, 78, 147 (2012).

[32]N. Kɪcɪr, O. Ozkendir, A. Farha, F. Kɪrmɪzɪgül, T. Tuken, C. Gumus, S. Ҫabuk, M. Erbil, Y. Ufuktepe, Indian Journal of Physics, 89, 1013 (2015).

[33]J. Elias, R. Tena-Zaera, C. Lévy-Clément, Thin Solid Films, 515, 8553 (2007).