TiO2-BaTiO3 Composite Films as Photoanode for Dye Sensitized Solar Cell: Effect of BaTiO3 Content

TiO2-BaTiO3 Composite Films as Photoanode for Dye Sensitized Solar Cell: Effect of BaTiO3 Content

S.N. Sadikin M.Y.A. Rahman* A.A. Umar

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Corresponding Author Email: 
mohd.yusri@ukm.edu.my
Page: 
109-113
|
DOI: 
https://doi.org/10.14447/jnmes.v20i3.325
Received: 
2 May 2017
| |
Accepted: 
1 July 2017
| | Citation
Abstract: 

This manuscript reports the use of TiO2-BaTiO3 composite films as a photoanode in dye-sensitized solar cell (DSSC). The influence of BaTiO3 content on the performance parameters of the DSSC has been investigated. The composite has been prepared on ITO glass substrate via sol-gel assisted with spin coating technique. The XRD analysis reveals that the sample is crystalline with the phase of BaTiO3 and anatase TiO2. From the FESEM observation, it was found that the pure sample contains bigger pores compared with the other samples prepared with various BaTiO3 contents. The samples become more compact as the content of BaTiO3 increases. The samples absorb more light in ultraviolet (UV) region than visible region. The area of absorption window varies with BaTiO3 content. The device utilizing the sample with 0 and 6 wt.% BaTiO3demonstrated the lowest leak current. The device utilizing pure sample produced the highest η of 0.18%. This is due to this device utilized the sample with highest porosity, lowest leak current and charge transfer resistance, Rct.

Keywords: 

barium titanate, composite, DSSC, photoanode, titanium dioxide

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] H. Kim, T. Hwang, J Sol-Gel Sci. Technol., 72, 67 (2014).

[2] N.A. Ludin, A.M.A. Mahmoud, A.B. Mohamad, A.A.H. Kadhum, K. Sopian, N.S. Abdul Karim, Renew. Sustain. Energy Rev., 31, 386 (2014).

[3] S.K.M. Maarof, M. Rusop, S. Abdullah, Adv. Mater. Research, 832, 763 (2014).

[4] Q. Zhang, D. Myers, J. Lan, S.A. Jenekhe, G. Cao. Phys. Chem. Chem. Phys., 14, 14982 (2012).

[5] Neetu, I.C. Maurya, A.K. Gupta, P. Srivastava, L. Bahadur, J Solid State Electrochem., 21, 1229 (2007).

[6] S.G. Kim, M.J. Ju, I.T. Choi, W.S. Choi, H.K. Kim, Rapid Comm. Photoscience, 3, 20 (2014).

[7] Q. Hu, C. Wu, L. Cao, B. Chi, J. Pu, L. Jian, J. Power Sources, 226, 8 (2013).

[8] M. Zhu, X. Li, W. Liu, Y. Cui, Journal of Power Sources, 262, 349 (2014).

[9] H. Dong, Z. Wu, Y. Gao, A. El-Shafei, S. Ning, J. Xi, B. Jiao, Organic Electronics, 15, 2847 (2014).

[10]S. Nayak, B. Sahoo, T.P. Chaki, D. Khastgir, RSC Adv., 4, 1212 (2014).

[11]J.E. Garland, D.J. Crain, D. Roy, Electrochim. Acta, 148, 62 (2014).

[12]R. Tang, Z. Xie, S. Zhou, Y. Zhang, Z. Yuan, L. Zhang, L. Yin, ACS. Appl. Mater. Interfaces, 8, 22201 (2016).

[13]A. Mashreghi, H. Zare, J Solid State Electrochem., 20, 2693 (2016).

[14]S.H. Ahn, D.J. Kim, W.S. Chi, J.H. Kim, Adv. Funct. Mater., 24, 5037 (2014).