Investigations of Electro-hydrothermally Grown ZnO Nanostructures on Copper Grids

Investigations of Electro-hydrothermally Grown ZnO Nanostructures on Copper Grids

Tzu-Yi Yu Chen Hao Hung Yu Shan Lee Chia Feng Lin Wei Min Su Chien-Cheng Lu Cheng-Yuan Weng Yewchung Sermon Wu Pei Yu Wu Hsiang Chen*

Department of Information Management ,National Chi Nan University ,Taiwan, ROC

Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Taiwan, ROC

Department of Materials Science and Engineering, National Chung Hsing University, Taiwan, ROC

Department of Materials Science and Engineering, National Chiao Tung University, Taiwan, ROC

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
71-75
|
DOI: 
https://doi.org/10.14447/jnmes.v20i2.305
Received: 
16 October 2016
| |
Accepted: 
30 April 2017
| | Citation
Abstract: 

Two types of ZnO nanostructures were electro-hydrothermally deposited on mesh 100 and 200 copper grids. To investigate the nanostructures, multiple material analyses were used to analyze the material properties. FESEM images indicate that nanoflow-ers/nanorods could be grown on the mesh 100 copper grids while a single layer of ZnO nanorods could be grown on the mesh 200 copper grids. Since the size of the grid holes might influence the chemical reactions during the growth of the nanostructures, all the other material analyzes also reveale1 distinct material characteristics of these two types of nanostructures on the copper grid. Based on the experimental results, modulating the ZnO nanostructure will be helpful for future applications of ZnO nanostructures on copper substrates.

Keywords: 

electro-hydrothermal, copper grids, nanoflowers, nanorods, grid holes

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] K. Yu, Y. Zhang, L. Luo, W. Wang, Z. Zhu, J. Wang, Y. Cui, H. Ma, W. Lu, Applied Physics A, 79, 443 (2004).

[2] D.-K. Kwon, S.J. Lee, J.-M. Myoung, Nanoscale, 8, 16677 (2016).

[3] H. Chen, Y.-M. Yeh, J.-Z. Chen, S.-M. Liu, B.Y. Huang, Z.-H. Wu, S.-L. Tsai, H.-W. Chang, Y.-C. Chu, C.H. Liao, Thin Solid Films, 549, 74 (2013).

[4] J. Lei, B. Yin, Y. Qiu, H. Zhang, Y. Chang, Y. Luo, Y. Zhao, J. Ji, L. Hu, RSC Advances, 5, 59458 (2015).

[5] R. Shabannia, Journal of Molecular Structure, 1118, 157 (2016).

[6] N. Sheikh, N. Afzulpurkar, M.W. Ashraf, Journal of Nano-materials, 2013, 1 (2013).

[7] J.F. Gong, C.Y. Lan, B. Zhang, K.X. Zhang, W.H. Zhu, Ad-vanced Materials Research, 347, 3388 (2012).

[8] Y. Lai, Y. Wang, S. Cheng, J. Yu, Journal of Electronic Materi-als, 43, 2676 (2014).

[9] H. Chen, Y.Y. He, M.H. Lin, S.R. Lin, T.W. Chang, C.F. Lin, C.-T.R. Yu, M.L. Sheu, C.B. Chen, Y.-S. Lin, Ceramics Inter-national, 42, 3424 (2016).

[10]H. Chen, C.B. Chen, Y.C. Chu, Ceramics International, 40, 6191 (2014).

[11]H. Wang, Q. Pan, Y. Cheng, J. Zhao, G. Yin, Electrochimica Acta, 54, 2851 (2009).

[12]H. Zhang, X. Sun, R. Wang, D. Yu, Journal of crystal growth, 269, 464 (2004).

[13]L. Podrezova, V. Cauda, S. Stassi, G. Cicero, K.A. Abdullin, B. Alpysbaeva, 49, 599 (2014).

[14]Y. Zhu, T. Yu, F. Cheong, X. Xu, C. Lim, V. Tan, J. Thong, C.H. Sow, Nanotechnology, 16, 88 (2004).

[15]L. Armelao, M. Fabrizio, S. Gialanella, F. Zordan, Thin Solid films, 394, 89 (2001).