Investigation the Electrochemical Behavior of 5-(4-Dimethylamino-Benylidene)-1,3-Diethyl-2-Thioxodihydro-Pyrimidine-4,6-Dione Using Semi-Integration of Current

Investigation the Electrochemical Behavior of 5-(4-Dimethylamino-Benylidene)-1,3-Diethyl-2-Thioxodihydro-Pyrimidine-4,6-Dione Using Semi-Integration of Current

Mohamed A. Ghanem* Ibrahim S. El-Hallag Prabhakarn Arunachalam

Chemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudia Arabia

Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

Corresponding Author Email: 
mghanem@ksu.edu.sa
Page: 
53-57
|
DOI: 
https://doi.org/10.14447/jnmes.v20i2.297
Received: 
05 January 2017
| |
Accepted: 
15 March 2017
| | Citation
Abstract: 

The electrochemical behavior of 5-(4-Dimethylamino-benylidene)-1,3-diethyl-2-thioxo-dihydro-pyrimidine-4,6-dione at a plat-inum electrode was studied by semi-integration, semi differentiation of current, and digital simulation methods in 0.1 mol/L tetra-ethylammonium perchlorate (TEACl) in acetonitrile solvent. Cyclic voltammetric study revealed that the presence of three oxidative peaks due to the presence of two electron transfer coupled by chemical reaction (EC) and followed by electron transfer (E) step then EC, i.e., the overall process is ECEEC scheme. On going to negative potential there are two unidirectional reductive peaks associated with the oxida-tive peaks. The elucidation of the electrode behavior, the electrochemical and chemical data of the compound under investigation was de-termined using sweep voltammetry, semi integration & semi differentiation of current. The calculated electrochemical parameters and the nature of the electrode reaction were established & confirmed via generation of the theoretical cyclic voltammograms.

Keywords: 

sweep voltammetry, convolution transforms, theoretical cyclic voltammograms

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgment
  References

[1] M.M. Labes; P. Love; F.L. Nichols, Chem. Rev., 79, 1 (1979).

[2] A.J. Banister; I.B. Gorrell., Adv. Mater., 10, 1415 (1998).

[3] J.M. Rawson; J.J. Longridge., Chem. Soc. Rev., 26, 53 (.).

[4] J.-P. Lang; H. Kawaguchi; K. Tatsumi, J. Chem. Soc., Dalton Trans., 2573 (2002).

[5] T. Chivers., Sulfur–Nitrogen Compounds. In Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd: 2006.

[6] W. Ji; S. Shi; H. J. Du; P. Ge; S. H. Tang; X. Q. Xin., J. Phys. Chem., 99, 17297 (1995).

[7] R.T. Oakley., Cyclic and Heterocyclic Thiazenes. In Prog. In-org. Chem., John Wiley & Sons, Inc., p299-391, 2007.

[8] M.–H. Whangbo; R. Hoffmann; R.B. Woodward., Proc. Royal Soc. London A. Math. Phy. Sci., 366, 23 (1979).

[9] J.M. Rawson; G.D. McManus., Coord. Chem. Rev., 189, 135 (1999).

[10]A.W. Cordes; R.C. Haddon; R.T. Oakley., Adv. Mater., 6, 798 (1994).

[11]S. Al-Ahmad; B. Boje; J. Magull; T.B. Rauchfuss; Y. Zheng; J. Am. Chem. Soc., 117, 1145 (1995).

[12]K. Krumova; G. Cosa ; J. Am. Chem. Soc., 132, 17560 (2010).

[13]F. Pop; A. Amacher; N. Avarvari; J. Ding; L.M.L. Daku; A. Hauser; M. Koch; J. Hauser; S.-X. Liu; S. Decurtins; Chem. A. Eur. J., 19, 2504 (2013).

[14]K. Bechgaard; V.D. Parker; C.T. Pedersen; J. Am. Chem. Soc., 95, 4373 (1973).

[15]R.T. Boeré; K.H. Moock; M.Z. Parvez, M; Anorg., Allg. Chem., 620, 1589 (1994).

[16]J. Geue Rodney; V. Hanna John; A. Höhn; C.J. Qin; F. Ralph Stephen; M. Sargeson Alan; C.Willis Anthony; In Electron Transfer Reactions, American Chemical Society, 253, 137 (1997).

[17]P. Bullock; A.M. Bond; R.T. Boeré; T.M. Gietz; T.L. Roem-mele; S.D. Seagrave; J.D. Masuda; M. Parvez; J. Am. Chem. Soc., 135, 11205 (2013).

[18]V.Y. Lee; A. Sekiguchi; Acc. Chem. Res., 40, 410 (2007).

[19]J.C. Imbeaux and J.M. Saveant, J. Electroanal. Chem., 44, 169 (1970).

[20]K.B. Oldham, G.D. Zoski, Anal. Chem., 52, 2116 (1980).

[21]A. Neudeck and J. Dittrich, J. Electroanal. Chem., 264, 91 (1989).

[22]I.S. El-Hallag, Ph.D. Thesis, Tanta University, Egypt, 1991.

[23]R.S. Nichlson, Anal. Chem., 37, 1351 (1965).

[24]A.A. Al-Owais, I.S. El-Hallag, L.M. Al-Harbi, E.H. El-Mossalamy and H.A. Qar., J. New Mat. for Electrochem. Sys-tems, 17, 17 (2014).

[25]Ammar, J.M. Saveant, J. Electroanal. Chem., 47, 215 (1973).

[26]J. Banks; Discrete-event system simulation. Prentice Hall: 2001.

[27]D. Britz; Digital Simulation in Electrochemistry, Springer: 2005.

[28]A.B. Bard; L.R. Faulkner; Electrochemical Methods: Funda-mentals and Applications, 2001.

[29] S.W. Feldberg; C. Auerbach; Anal. Chem., 36, 505 (1964).

[30] Z.-X. Deng; X.-Q. Lin; Z.-H. Tong; Chin. J. Chem., 22, 719 (2004).