Zinc Oxide Nanorod Growth on Au-coated Silverwire

Zinc Oxide Nanorod Growth on Au-coated Silverwire

Hsiang Chen* Wei Ming Su Yu-Tzu Chen Chien-Cheng Lu Cheng-Yuan Weng

Applied Materials and Optoelectronic Engineering, National Chi Nan University, Taiwan, ROC

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
49-51
|
DOI: 
https://doi.org/10.14447/jnmes.v20i2.296
Received: 
15 February 2017
| |
Accepted: 
01 May 2017
| | Citation
Abstract: 

In this study, zinc oxide nanostructures were grown on gold-coated silver wires by hydrothermal method. Multiple analyses on these nanostructures were performed to understand the structure and optical properties of zinc oxide on Au-plated silver wires, Owing to the Au-coated layer, ZnO nanorods could appear rather than ZnO nanoflakes on pure silver wires. Moreover, The deposited gold layer could vary zinc oxide nanostructures to nanorods The multiple analysis shows that lying flat ZnO structures with weak (002) crystalline structures and more defects could appear on the silver wire rather than ZnO nanostructures on pure silver wires.

Keywords: 

ZnO nanorod, hydrothermal method, Au-coated silver wire, defect

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] L. Vayssieres, Advanced Materials, 15, 464 (2003).

[2] Q. Huang, D. Zeng, H. Li, C. Xie, Nanoscale, 4, 5651 (2012).

[3] M. Raffi, F. Hussain, T. Bhatti, J. Akhter, A. Hameed, M. Hasan, J. Mater. Sci. Technol, 24, 192 (2008).

[4] J.A.P.P. De La, R. Rue, Photonics and Nanostructures Fundamentals and Applications, in: 6th Int. Symp. on Photonic and Electromagnetic Crystal Structures (PECS-VI), 2005.

[5] Z.X. Ye, Q. Zhang, RSC Adv., 78502 (2015).

[6] H. Chen, Y.-M. Yeh, J.-Z. Chen, S.-M. Liu, B.Y. Huang, Z.-H. Wu, S.-L. Tsai, H.-W. Chang, Y.C. Chu, C.H. Liao, Thin Solid Films, 549, 74 (2013).

[7] Y.-M. Yeh, H. Chen, Thin Solid Films, 544, 521 (2013).

[8] S.M.U. Ali, O. Nur, M. Willander, B. Danielsson, Sensors Actuators B Chem., 145, 869 (2010).

[9]S. Shi, X. Zhuang, B. Cheng, X. Wang, J. Mater. Chem. A, 1, 3779 (2013).

[10]I.Y. Bu, C.-C. Yang, Super lattices Microstruct., 51, 745 (2012).

[11]Shen-Che Huang, Kun Min Hsieh, Ting Wei Chang, Yi Cian Chen, Chang-Tze Ricky Yu, Tien-Chang Lu, Chia Feng Lin, Tzu-Yi Yu, Tze-Ting Wang, Hsiang Chen, Ceramics International, 42, 7848 (2016).

[12]C. Gray, J. Cullen, C. Byrne, G. Hughes, I. Buyanova, W. Chen, M.O. Henry, E. McGlynn, Journal of Crystal Growth, 429, 6 (2015).

[13]Z. Qin, Z. Li, G. Yun, K. Shi, K. Li, B. Yang, Appl. Surf. Sci., 292, 544 (2014).

[14]S.-C. Huang, K.M. Hsieh, T.W. Chang, Y.C. Chen, C.-T.R. Yu, T.-C. Lu, C.F. Lin, T.-Y. Yu, T.-T. Wang, H. Chen, Ceramics International, 42, 7848 (2016).

[15]S. Shi, X. Zhuang, B. Cheng, X. Wang, Journal of Materials Chemistry A, 1, 13779 (2013).

[16]J. Duquette, A. Petric, Journal of power sources, 137, 71 (2004).