Preparation of Ti/TiO2 Anode for Electrochemical Oxidation of Toxic Priority Pollutants

Preparation of Ti/TiO2 Anode for Electrochemical Oxidation of Toxic Priority Pollutants

Asim Yaqub Mohamed Hasnain Isa Huma Ajab* Muhammad Junaid 

Department of Environmental Sciences, COMSATS Institute of Information Technology Abbottabad, KPK Pakistan

Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia

Department of Chemistry, COMSATS Institute of Information Technology Abbottabad, Pakistan

Computer Sciences Department, University of Haripur, KPK Pakistan

Corresponding Author Email:
12 October 2016
| |
15 January 2017
| | Citation

In present study, Ti/TiO2 anodes were prepared in laboratory for degradation of polycyclic aromatic hydrocarbons. Polycyclic aromatic hydrocarbons considered as priority pollutants because of their carcinogenetic properties. PAHs were electrochemically oxidized under galvanostatic conditions using TiO2 coated Ti anode. A synthetic solution containing 16 priority PAHs were prepared in the lab. Surface morphology showed cracked mud structure of coated Ti/TiO2 surface. All the PAHs were efficiently oxidized and degraded from solution. About 96.87% of ƩPAHs were removed in five hours from the bulk solution. The results showed the potential of electrochemical process with Ti/TiO2 anode as a possible and reliable technique for the degradation of PAHs in water.


electrochemical, degradation, Ti-TiO2, PAHs

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions

[1] D.J. Freeman and F.C.R. Cattell, Environ Sci Technol., 24, 1581 (1990).

[2] L.H. Lim, R.M. Harrison and S. Harrad, Environ Sci Technol., 33, 3538 (1999).

[3] A.L. Juhasz and R. Naidu, Int. Biodeterior. Biodegrad., 45, 57 (2000).

[4] S.K. Samanta, O.V. Singh and R.K. Jain, Trends Biotechnol., 20, 243 (2002).

[5] C.E. Cerniglia, Adv Appl Microbiol., 30, 31 (1984).

[6] R. Renner, Environ Sci Technol., 33, 62A (1999).

[7] C.L. Lemieux, A.S. Long, I.B. Lambert, S. Lundstedt, M. Tysklind and P.A. White, Environ. Sci. Technol., 49(3), 1797 (2015).

[8] E. Ferrarese, G. Andreottola and I.A. Opera, J. Hazard. Mater., 152, 128 (2008).

[9] E.H. Ezechi, M.H. Isa, S.R.M. Kutty and A. Yaqub, Process Safety and Environ. Protec., 92(6), 509 (2014).

[10]A. Yaqub and H. Ajab, Rev. Chem. Eng., 29(2), 123 (2013).

[11]A. Yaqub, H Ajab, M.H. Isa, H. Jusoh, M. Junaid and R. Farooq, J. New Mat. Electrochem. Systems., 15 (2012).

[12]F. Montilla, E. Morallon and J.L. V´azquez, J. Electrochem Soc., 152, B421 (2005).

[13]A. Yaqub, M.H. Isa, S.R.M. Kutty and H. Ajab, J. New Mat. Electrochem. Systems, 17, 39 (2014).

[14]A. Yaqub, M.H. Isa, S.R.M. Kutty and H. Ajab, Electrochemis-try, 82, 979 (2014).

[15]A. Yaqub, M.H. Isa, and H. Ajab, J. Environ. Engineering, 141(4) (2015).

[16]M. Panizza, C. Bocca and G. Cerisola, Wat. Res., 34, 2601 (2000).

[17]A. Pintar, M. Besson and P. Gallezot, App. Cat. B: Environ., 31, 275 (2001).

[18]J.C. Hostachy, G. Lenon and J.L. Pisicchio, G. Coste and C Legay, Water Sci. Technol., 35, 261 (1997).

[19] E. Kusmierek, E. Chrzescijanska, M.S. Nicze and J.K. Czaplinska. J. Appl. Electrochem., 41, 51 (2011).

[20]C. Comninellis, Electrochim. Acta, 39, 1857 (1994).

[21]O. Simod, V. Schaller and C. Comninellis, Electrochim. ActA, 42, 2009 (1997).

[22]C. Comninellis and C. Pulgarin, J. Appl. Electrochem., 21, 703 (1991).

[23]X-Y. Li, Y-H.Cui, Y-J. Feng, Z-M. Xie and J-D. Gu, Wat. Res, 39, 1972 (2005).

[24]Y.J. Feng and X.Y. Li, Wat. Res., 37, 2399 (2003).