Study of IrxMny(CO)n(DMF)z as Electrocatalyst for Oxygen Reduction and Hydrogen Oxidation in the Presence of Fuel Cell Contaminants

Study of IrxMny(CO)n(DMF)z as Electrocatalyst for Oxygen Reduction and Hydrogen Oxidation in the Presence of Fuel Cell Contaminants

M.L. Barrios-Reyna J. Uribe-Godínez* J.M. Olivares-Ramírez O. Jiménez-Sandoval*

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro. 76230, MEXICO

Universidad Tecnológica de San Juan del Río, Av. La Palma No. 125, Col. Vista Hermosa, San Juan del Río, Qro. 76800, MEXICO

Centro Nacional de Metrología. Km 4.5 Carretera a Los Cués, El Marqués, Qro. 76246, MEXICO

Corresponding Author Email:,
5 July 2016
15 October 2016
31 October 2016
| Citation

The oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) have been studied on a wide range of elec-trocatalysts, including bimetallic materials which are based solely on platinum group metals and their alloys. This work reports the synthe-sis and characterization of a novel bimetallic electrocatalyst, IrxMny(CO)n(DMF)z, for the ORR and HOR in acid media. The material was synthesized by reacting Ir4(CO)12 and MnCl2·4H2O in DMF. It was characterized structurally by FT-IR and micro-Raman spectroscopy, X-ray diffraction, SEM and energy-dispersive X-ray spectroscopy; the electrochemical characterization was made by the rotating disk elec-trode technique, at room temperature. The electrocatalytic activity of the new material for the ORR and HOR does not show appreciable variations due to the presence of methanol or carbon monoxide, respectively, even at high concentrations of these contaminants (2 mol L-1 methanol and 0.5% CO). This tolerance is a very important property with respect to platinum-based catalysts, which are poisoned by low concentrations of such contaminants. The kinetic parameters of the novel catalyst, such as Tafel slope (b), exchange current density (jo) and charge transfer coefficient (α), are reported as well. The results show that the novel electrocatalyst is attractive for evaluation as cath-ode/anode in PEM fuel cells.


electrocatalyst, oxygen reduction reaction, hydrogen, CO-tolerance, methanol, PEM fuel cell

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

[1] Barbir F., PEM Fuel Cell Theory and Practice, Elsevier, San Diego, 2005.

[2] Ralph T.R., Horgarth M.P., Platinum Met. Rev., 46, 3 (2002).

[3] Li X., Principles of Fuel Cells, Taylor & Francis, New York, 2006.

[4] Horgarth M.P., Ralph T.R., Platinum Met. Rev., 46, 146 (2002).

[5] Stamenkovic V., Mun B.S., Mayrhofer K.J.J., Ross P.N., Markovic N.M., Rossmeisl J., Greeley J., Nørskov J.K., An-gew. Chem. Int. Ed., 45, 2897 (2006).

[6] Ermete A., Appl. Catal. B Environ., 74, 337 (2007).

[7] Wang R.F., Liao S.J., Liu H.Y., Meng H., J. Power Sources, 171, 471 (2007).

[8] Mojovic Z., Mudrinic T., Rabi-Stankovic A., Ivanovic-Sasic A., Marinovic S., Zunic M., Jovanovic D., Sci. Sinter., 45, 89 (2013).

[9] Lefterova E.D., Stoyanova A.E., Borisov G.R., Slavcheva E.P., Bulg. Chem. Commun., 43, 138 (2011).

[10]Lima F.H.B., Calegaro M.L., Ticianelli E.A., Electrochim. Acta, 52, 3732 (2007).

[11]Hernández-Hernández H.M., Olivares-Ramírez J.M., Jiménez-Sandoval O., Int. J. Hydrogen Energy, 38, 7674 (2013).

[12]Jang I., Hwang I., Tak Y., Electrochim. Acta, 90, 148 (2013).

[13]Marshall A., Børresen B., Hagen G., Tsypkin M., Tunold R., Electrochim. Acta, 51, 3161 (2006).

[14]Siracusano S., Baglio V., Di Blasi A., Briguglio N., Stassi A., Ornelas R., Trifoni E., Antonucci V., Aricò A.S., Int J. Hydrogen Energy, 35, 5558 (2010).

[15]Radev I., Topalov G., Lefterova E., Ganske G., Schnakenberg U., Tsotridis G., Slavcheva E., Int. J. Hydrogen Energy, 37, 7730 (2012).

[16]Willard H., Dean J., Merrit Jr. L., Settle J.r F.A., Instrumental Methods of Analysis, Van Nostrand, New York, 1981.

[17]Chalmers J.M., Griffiths P.R., Handbook of Vibrational Spec-troscopy, Wiley, West Sussex, 2002.

[18]Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordina-tion, Organometallic and Bioinorganic Chemistry, Wiley, New York, 2009.

[19]Lin Vien D., Colthup N.B., Fateley W.G., Grasselli J.G., Hand-book of Infrared and Raman Characteristic Frequencies of Or-ganic Molecules, Academic Press, San Diego, 2002.

[20]Desseyn H.O., Herrebout W.A., Clou K., Spectrochim. Acta A, 59, 835 (2003).

[21]Dollish F.R., Fateley W.G., Bentley F.F., Characteristic Raman Frequencies of Organic Compounds, Wiley, New York, 1974.

[22] Shukla A.K., Raman R.K ., Annu. Rev. Mater. Res., 33, 155 (2003).

[23]Gasteiger H.A.H., Markovic N.M., Ross P.N., J. Phys. Chem., 99, 8290 (1995).

[24]Gojkovic S.L., Vidakovic T.R., Electrochim. Acta, 47, 633 (2001).

[25]Altamirano-Gutiérrez A., Jiménez-Sandoval O., Uribe-Godínez J., Castellanos R.H., Borja-Arco E., Olivares-Ramirez J.M., Int. J. Hydrogen Energy, 34, 7983 (2009).

[26]Cheon J.Y., Ahn C., You D.J., Pak C., Hur S.H., Kim J., Joo S.H., J. Mater. Chem. A, 1, 1270 (2013).

[27]Alonso-Vante N., Tributsch H., Solorza-Feria O., Electrochim. Acta, 40, 567 (1995).

[28]Kinoshita K., Electrochemical Oxygen Technology, Wiley, New York, 1992.

[29]Damjanovic A., Genshaw M.A., Bockris J., J. Chem. Phys., 45, 4057 (1996).

[30]Borup R., Meyers J., Pivovar B., Kim Y.S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenay P., More K., Stroh K., Zawodzinski T., Boncella J., McGrath J.E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K.I., Iwashita N., Chem. Rev., 107, 3904 (2007).

[31]Hsueh K.L., Chin D.T., Srinivasan S., J. Electroanal. Chem., 153, 79 (1983).

[32]Uribe-Godínez J., Jiménez-Sandoval O., Int. J. Hydrogen Energy, 37, 9477 (2012).

[33]Gileadi E., Electrode Kinetics, Wiley, New York, 1993.

[34]Borja-Arco E., Castellanos R.H., Uribe-Godínez J., Altamirano-Gutiérrez A., Jiménez-Sandoval O., J. Power Sources, 188, 387 (2009).

[35]Bard A.J., Faulkner L.R., Swain E., Robey C., Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.

[36]Chu D., Jiang R., Solid State Ionics, 148, 591 (2002).

[37]Tributsch H., Bron M., Hilgendorff M., Schulenburg H., Dorbandt I., Eyert V., Bogdanoff P., Fiechter S., J. Electroanal. Chem., 8, 739 (2001).

[38]Jiang R.Z., Chu D., J. Electrochem. Soc., 147, 4605 (2000).

[39]Ocampo A.L., Castellanos R.H., Sebastian P.J., J. New Mater. Electrochem. Syst., 5, 163 (2002).

[40]Hilgendorff M., Diesner K., Schulenburg H., Bogdanoff P., Bron M., Fiechter S., J. New Mater. Electrochem. Syst., 5, 71 (2002).

[41]Sun G.Q., Wang J.T., Savinell R.F., J. Appl. Electrochem., 28, 1087 (1998).

[42]Schmidt T.J., Paulus U.A., Gasteiger H.A., Alonso-Vante N., Behm R.J., J. Electrochem. Soc., 147, 2620, 2000.

[43]Koper M.T.M., Surf. Sci., 548, 1 (2004).

[44]Mello R.M.Q., Ticianelli E.A., Electrochim. Acta, 42, 1031 (1997).

[45]Uribe-Godínez J., García-Montalvo V., Jiménez-Sandoval O., Int. J. Hydrogen Energy, 38, 7680 (2013).

[46]Urian R.C., Gullá A.F., Mukerjee S., J. Electroanal. Chem., 554-555, 307 (2003).

[47]Lopes P.P., Freitas K.S., Ticianelli E.A ., Electrocatalysis, 1, 200, 2010.