Ethanol - Tolerant Pt-free Cathode Catalysts for the Alkaline Direct Ethanol Fuel Cell

Ethanol - Tolerant Pt-free Cathode Catalysts for the Alkaline Direct Ethanol Fuel Cell

Chakkrapong Chaiburi* Bernd Cermenek Birgit Elvira Pichler Christoph Grimmer Alexander Schenk Viktor Hacker

Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria

Corresponding Author Email: 
kchakkrapong@yahoo.com; chakkrapong.chaiburi@student.tugraz.at
Page: 
199-207
|
DOI: 
https://doi.org/10.14447/jnmes.v19i4.282
Received: 
23 September 2016
| |
Accepted: 
24 October 2016
| | Citation
Abstract: 

The structure and electrochemical activity of carbon supported Pt-free cathode catalysts (Ag/C, Mn3O4/C and AgMnO2/C) are investigated by means of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV). The catalysts display ethanol-tolerance for the oxygen reduction reaction (ORR) in 0.1 M KOH electrolyte containing ethanol at different temperatures. Because crossover of ethanol from anode to cathode through the membrane can occur in alkaline direct ethanol fuel cells (ADEFCs), selectivity of the cathode catalyst is of high importance. AgMnO2/C catalyst exhibits the highest catalytic activity toward ORR in presence of alkaline electrolytes containing ethanol.

Keywords: 

alkaline direct ethanol fuel cell, oxygen reduction reaction, ethanol-tolerant, silver manganese oxides, manganese oxides, fuel cells

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] J. Huang, A. Faghri, J. Fuel Cell Sci. Technol., 11, 051007 (2014).

[2] J. Kemsley, Chem. Eng. News, 85, 55 (2007).

[3] M. Zhiani, H. A. Gasteiger, M. Piana, S. Catanorchi, Int. J. Hydrogen Energy, 36, 5110 (2011).

[4] G. Koscher, K. Kordesch, J. Power Sources, 136, 215 (2004).

[5] N. Wagner, M. Schulze, E. Gülzow, J. Power Sources, 127, 264 (2004).

[6] Y. Fang, X. Yang, L. Wang, Y. Liu, J. Power Sources, 267, 33 (2014).

[7] A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V.Y. Filimonov, J. Power Sources, 188, 502 (2009).

[8] Q. Tung, L. Jiang, J. Qi, Q. Jiang, S. Wang, G. Sun, Appl. Catal.: B Environ., 104, 337 (2011).

[9] Q. Wu, L. Jiang, L. Qi, L. Yuan, E. Wang, G. Sun, Electrochimica Acta, 123, 167 (2014).

[10]C. Grimmer, R. Zacharias, M. Grandi, B. Pichler, I. Kaltenboeck, F. Gebetsroither, J. Wagner, B. Cermenek, S. Weinberger, A. Schenk, V. Hacker, J. Electrochem. Soc., 163, 278 (2016).

[11]W. Sun, A. Hsu, R. Chen, J. Power Sources, 196, 627 (2011).

[12]Y. Garsany, S. Dutta, K.E. Swider-Lyons, J. Power Sources, 216, 515 (2012).

[13]J. Qiao, L. Xu, L. Ding, P. Shi, L. Zhang, R. Baker, J. Zhang, Int. J. Electrochem. Sci., 8, 1189 (2013).

[14]H. Meng, P. K. Shen, Electrochem. Commun., 8, 588 (2006).

[15]M. Chatenet, M. B. Molina-Concha, N. El-Kissi, G. Parrour, J. P. Diard, Electrochimica Acta, 54, 4426 (2009).

[16]A.C. Garcia, J.J. Linares, M. Chatenet, E.A. Ticianelli, Electrocatalysis, 5, 41 (2014).

[17]P. Han, D. M. Bartels, J. Phys. Chem., 100, 5597 (1996).

[18]D. Tromans, Ind. Eng. Chem. Res., 39, 805 (2000).

[19]W. Xing, G. Yin, J. Zhang, “Rotating Electrode Methods and Oxygen Reduction Electrocatalysts”, Amsterdam: Elsevier; 2014, p. 1-31.