Electrocatalytic Properties of Egg-white Sol-gel Derived MnxFe3-xO4 (0 ≤ x ≤ 1.5) for Alkaline Water Electrolysis

Electrocatalytic Properties of Egg-white Sol-gel Derived MnxFe3-xO4 (0 ≤ x ≤ 1.5) for Alkaline Water Electrolysis

N.K. Singh* Ritu Yadav M.K. Yadav

Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow –226007 (India)

Corresponding Author Email: 
nksbhu@yahoo.com; singh_narendra@lkouniv.ac.in
Page: 
209-215
|
DOI: 
https://doi.org/10.14447/jnmes.v19i4.281
Received: 
21 September 2016
| |
Accepted: 
19 October 2016
| | Citation
Abstract: 

Some binary ferrites having molecular formula, MnxFe3-xO4 (0 ≤ x ≤ 1.5) have been synthesized by a simple and cost effective egg white sol-gel route. In each preparation, nitrates of constituent metal were taken as starting materials and egg white as gelling agent. The material, thus obtained was altered in the form of film electrode on the pre-treated Ni- support using an oxide-slurry painting tech-nique and investigated as electrocatalysts for the oxygen evolution reaction in KOH solutions. The study showed that Mn-substitution in the base oxide matrix influences the electrocatalytic activity of the material significantly and found to be greatest with 0.5 mol Mn-substitution. The reaction order has been found to be approximately unity with respect to OH¯ concentration. The Tafel slope values at low potential ranged between ~ 52 and ~ 65 mVdecade-1. The thermodynamic parameters namely, standard apparent electrochemical enthalpy of activa-tion (), standard enthalpy of activation () and standard entropy of activation () for the oxygen evolution reac-tion (OER) have also been determined. It has been observed that and values decreased with Mn-substitution in the Fe3O4 lattice. This decrease inandwas found to be greatest with 0.5 mol Mn. Thevalues were also found to be highly negative varying between ~ - 185 and – 211 J deg-1 mol-1.

Keywords: 

egg white, sol-gel, electrocatalysis, oxygen evolution, thermodynamic parameters

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] Trasatti S., Transition metal oxides: versatile materials for electrolysis, In: Lipkowski J, Ross PN, editors. The electrochemistry of novel materials. Weinheim: VCH Publishers; p-207 (1994).

[2] Bueno Alexandre R., Gregori Maria L., Nobrega Maria C. S., J. Magn Magn Mater, 320, 864 (2008).

[3] Arias Jose L., Ruiz Adolfina M., Gallardo Visitacion, J. Controlled Release, 125(1), 50 (2008).

[4] Zhang Yan-Qing, Zhang Xiong, J. Inorganic Materials, 21(4), 861 (2006).

[5] Mitchell D. G., J. Magn Reson Imaging, 7, 1 (1997).

[6] Allen P.D., Hampson N.A., Bignold G.J., J. Electroanal. Chem., 99, 299 (1979).

[7] O`Sullivan E.J.M., Calvo E.J, Comprehensive chemical kinetics, Amsterdam: Elsevier; 27, 263 (1987).

[8] Trasatti S., In: Lipkowski J, Ross PN., Electrochemistry of novel materials, New York: VCH; pp. 207 (1994).

[9] Tavares A.C., Bochatay L., Da Silva Pereira M.I., Da Costa F.M.A., Electrochim Acta, 41, 1953 (1996).

[10]Tavares A.C., Cartaxo M.A.M., Da Silva Pereira M.I., Da Costa F.M.A., J. SolidState Chem., 5, 57 (2001).

[11]Tavares A.C., Cartaxo M.A.M., Da Silva Pereira M.I.,. Da Costa F.M.A, J. Electroanal. Chem., 464, 187 (1999).

[12]Rios E., Gautier J-L, Poillerat G., Chartier P., Electrochim. Acta, 44, 1491 (1998).

[13]Svegl F., Orel B., Grabec-Svegl I., Kaucic V., Electrochim. Acta, , 45, 4359 (2000).

[14]Singh R.N., Singh N.K., Singh J.P., Electrochim. Acta, 47, 3873 (2002).

[15]Singh J.P., Singh N.K., Singh R.N., Int. J. Hydrogen Energy, 24, 433 (1999).

[16]Singh N.K., Tiwari S.K., Anitha K.L., Singh R.N., J. Chem. Soc. Faraday Trans, 92(14), 2397 (1996).

[17]Singh N.K., Singh R.N., Ind. J. Chem., 38A, 491 (1999).

[18]Singh R.N., Singh J.P., Lal B., Thomas M.J.K., Bera S., Elec-trochim. Acta, 51, 5515 (2006).

[19]Singh R.N., Singh J.P., Cong Nguyen H., Chartier P., Int. J. Hydrogen energy, 31, 1372 (2006).

[20]Singh R.N., Singh J.P., Cong Nguyen H., Chartier P., Int. J. Hydrogen Energy, 31, 1372 (2006).

[21]Singh R. N., Singh J. P., Lal B., Singh A., Int. J. Hydrogen Energy, 32, 11 (2007).

[22]Al-Hoshan M.S., Singh J.P., Al-Mayouf A.M., Al-Suhybani A. A., Shaddad M.N., Int. J. Electrochem. Sci., 7, 4959 (2012).

[23]Yadav Ritu, Yadav M.K., Singh N.K., Int. J. Electrochem. Sci., 8, 6321 (2013).

[24]Yadav Ritu, Singh N.K., Ind. J. Chem., 54A, 1221 (2015).

[25]Yadav Ritu, Jhasaketan, Singh N.K., Int. J. Electrochem. Sci., 10, 9297 (2015).

[26]Santi Maensiri, Chivalrat Masingboon, Banjong Boonchomb, Scripta Materialia, 56, 797 (2007).

[27]Lu R., Yang D., Cui D., Wang Z., Guo L., Int. J. Nanomedi-cine, 7, 2101 (2012).

[28]Mine Y., J. Worlds Poult Sci., 58, 31 (2002).

[29]Singh R.N., Tiwari S.K., Singh S.P., Singh N.K., Poillerat G., Chartier P., J.Chem. Soc. Faraday Trans., 92(14), 2593 (1996).

[30]Tiwari S.K., Chartier P., Singh R.N., J. Electrochem. Soc., 142, 148 (1995).

[31]Singh R.N., Pandey J.P., Singh N.K., Lal B., Chartier P., Koenig J. F., Electrochim Acta, 45, 1911 (2000).

[32]Okasha N., Mater. Chem. Phys., 84, 63 (2004).

[33]Gillot B., Nivoix V., Kester E., Nusillard O., Villete C., Tailhades Ph., Rousset A., Mater. Chem. Phys., 48, 111 (1997).

[34]Fradette N., Marsan B., J. Electrochem. Soc., 145(7), 2320 (1998).

[35]Iwakura C., Nishioka M., Tamura H., Nippon Kagaku Kashi, 7, 1136 (1982).

[36]Iwakura C., Nishioka M., Tamura H., Denki Kagaku, 49, 355 (1981).

[37]Orehotsky J., Huang H., Davidson C.R., Srinivasan S., J. Elec-troanal. Chem. 95, 233 (1979).

[38]Gileadi E., Electrode Kinetics, VCH Publishers Inc. New York, p. 151 (1993).

[39]Mills A., Davis H.L., Electrochim. Acta, 37(7), 1217 (1992).

[40]Kessler T., Triaca W.E., Arvia A.J., J. Appl. Electrochem., 24, 310 (1994).

[41] Nikolov I., Darkaou R., Zhecheva E., Stoyanova R., Dimitrov N., Vitanov T., J. Electroanal. Chem., 429, 157 (1997).