Significant Improvement of Electrochemical Performance of Ni-rich Cathode Material by Polyethylene Coating

Significant Improvement of Electrochemical Performance of Ni-rich Cathode Material by Polyethylene Coating

Byeong-Chan Jang Jong-Tae Son*

Department of Nano-Polymer Science & Engineering, Korea National University of Transportation Chungju, Chungbuk 380-702, Republic of Korea

Corresponding Author Email: 
jt1234@ut.ac.kr
Page: 
157-161
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.326
Received: 
27 March 2016
|
Accepted: 
04 July 2016
|
Published: 
15 August 2016
| Citation
Abstract: 

We attempted to use polyethylene (PE) to coat the surface of the cathode material in order to suppress these unnecessary reac-tion, and the results obtained via electrochemical impedance spectroscopy (EIS) suggest the growth of the SEI resistance and charge trans-fer resistance was suppressed in the samples consisting of 0.1 wt% PE-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2 (NCS). The initial discharge capacity of the coated material was of 190.56 mAhg-1 at 0.1 C between 3.0 and 4.3 V, and 94.6 % of this capacity was retained after 30 cycles. A notable of effect of the PE coating, is that the resulting exothermic temperature appears at approximately 258.1 °C, which is higher than that for bare NCS at 249.3 °C.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments
  References

[1] M. Guilmard, L. Croguennec, D. Delmas, Chem. Mater., 15, 4476 (2003).

[2] Z. Lu, J.R. Dahn, J. Electrochem. Soc., 149, A1454 (2002).

[3] Z. Lu, J.R. Dahn, J. Electrochem. Soc., 149, A815 (2002).

[4] Y.J. Park, Y.S. Hong, X. Wu, K.S. Ryu, S.H. Chang, J. Power Sources, 129, 288 (2004).

[5] X. Yang, X. Wang, L. Hu, G. Zou, S. Su, Y.S. Bai, H.B. Shu, Q. Wei, B.N. Hu, L. Ge, D. Wang, L. Liu, J. Power Sources, 242, 589 (2013).

[6] Y.K. Sun, S.T. Myung, M.H. Kim, J. Prakash, K. Amine, J. Am. Chem. Soc., 127, 13411 (2005).

[7] B.C. Park, H.J. Bang, K. Amine, E. Jung, Y.K. Sun, J. Power Sources, 174, 658 (2007).

[8] K.S. Lee, S.T. Myung, Y.K. Sun, J. Power Sources, 195, 6-43 (2010).

[9] H.J. Noh, S.J. Youn, C.S. Yoon, Y.K. Sun, J. Power Sources, 233, 121 (2013).

[10]S.W. Cho, G.O. Kim, J.H. Ju, J.W. Oh, K.S. Ryu, J. Materials Research Bulletin, 47, 2830 (2012).

[11]Y. Qi, Y. Huang, D. Jia, S.J. Bao, Z.P. Guo, Electrochimica Acta, 54, 4772 (2009).

[12]G.H. Kim, J.H Kim, S.T Myung, C.S Yoon, Y.K Sun, J. Elec-trochem. Soc., 152, A1707 (2005).

[13]C. Wu, F. Wu, L. Chen, X. Huang, Solid State Ionics, 152, 327 (2002).

[14]M. Kageyama, D. Li, K. Kobayakawa, Y. Sato, Y.S. Lee, J. Power Sources, 157, 494 (2006).

[15]S.H. Kang, K. Amine, J. Power Sources, 146, 654 (2005).

[16]J.W. Mullin, Crystallization Butterworths, London, 1961.

[17]G.W. Yoo, H.J. Jeon, J.T. Son, Journal of the Korean electro-chemical Society, 16, 59 (2013).

[19]R.J. Gummow, M.M. Thackeray. W.I.F. David, S. Hull Mater, Res. Bull., 27, 1992, p.327.

[20]S.U. Woo, B.C. Park, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun, J. Electrochem. Soc., 154, A649 (2007).

[21]G.G. Amatucci, N. Pereira, T. Zheng, J. –M. Tarascon, J. Elec-trochem. Soc., 148, A17 (2001).

[22]J.R. Dahn, U. von Sacken, C.A. Michal, Solid State Ionics, 44, 87 (1990).

[23]J.N. Reimers, E. Rossn, C.D. Jones, J.R. Dahn, Solid State Ionics, 61, 335 (1993).

[24]M. Zhou, L. Zhao, T. Doi, S. Okada, J. Yamaki, J. Power Sources, 195, 4952 (2010).

[25]M. Zhou, L. Zhao, S. Okada, J. Yamaki, J. Power Sources, 196, 8110 (2011).