Electrochemical Performance of FeF3·0.33H2O/MWCNTs Composite Cathode Synthesized by Solvothermal Process

Electrochemical Performance of FeF3·0.33H2O/MWCNTs Composite Cathode Synthesized by Solvothermal Process

Yanli Zhang Li WangJianjun Li Xiangming He Lei WenJian Gao Hengwei Liu Yufeng Zhang Peng Zhao 

Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084

Shenyang University of Chemical Technology, Shenyang 110142

State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016

Corresponding Author Email: 
hexm@tsinghua.edu.cn, wang-l@tsinghua.edu.cn
Page: 
103-109
|
DOI: 
https://doi.org/10.14447/jnmes.v18i2.377
Received: 
26 November 2014
|
Accepted: 
4 May 2014
|
Published: 
30 June 2015
| Citation
Abstract: 

This paper reports a FeF3·0.33H2O/multi-walled carbon nanotubes (MWCNTs) composite for energy storage applications. The composite material is prepared by solvothermal reaction with FeF3·3H2O and MWCNTs as precursors, and FeF3·3H2O was removed of crystalliferous water and converted to FeF3·0.33H2O during solvothermal treatment. Structural characterizations show that FeF3·0.33H2O that crystalline with a diameter of about 30 nm were distributed in the network of MWCNTs. As a cathode material for lithium ion batteries, FeF3·0.33H2O/MWCNTs was superior to pure FeF3·0.33H2O in terms of high capacity (an initial capacity of 181 mAh g-1 in 2.0-4.3 V at 20 mA g-1), good cycleability (50% capacity retension at 50th cycle) and good rate capability (116 mAh g-1 at 100 mA g-1). The enhanced performances were attributed to the conductive MWCNT network which improved the electron transport ability and buffered volume change of the cathode.

Keywords: 

lithium ion batteries, FeF3·0.33H2O, MWCNTs, composite, electrochemical.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work is supported by the MOST (Grant No. 2011CB935902, No. 2013CB934000, No. 2013AA050903 and No. 2010DFA72760) and the Tsinghua University Initiative Scientific Research Program (Grant No. 2010THZ08116, No. 2011THZ08139, No. 2011THZ01004 and No. 2012THZ08129) and State Key Laboratory of Automotive Safety and Energy (Grant No. ZZ2012-011).

  References

[1] J. M. Tarascon, Philos T R Soc A, 368, 3227 (2010).

[2] M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energ Environ Sci, 5, 7854 (2012).

[3] B. Dunn, H. Kamath and J. M. Tarascon, Science, 334, 928 (2011).

[4] G. G. Amatucci and N. Pereira, J Fluorine Chem, 128, 243 (2007).

[5] M. J. Zhou, L. W. Zhao, A. Kitajou, S. Okada and J. Yamaki, J Power Sources, 203, 103 (2012).

[6] M. J. Zhou, L. W. Zhao, S. Okada and J. Yamaki, J Power Sources, 196, 8110 (2011).

[7] M. J. Zhou, L. W. Zhao, T. Doi, S. Okada and J. Yamaki, J Power Sources, 195, 4952 (2010).

[8] C. L. Li, C. L. Yin, L. Gu, R. E. Dinnebier, X. K. Mu, P. A. van Aken and J. Maier, J Am Chem Soc, 135, 11425 (2013).

[9] L. Liu, H. P. Guo, M. Zhou, Q. L. Wei, Z. H. Yang, H. B. Shu, X. K. Yang, J. L. Tan, Z. C. Yan and X. Y. Wang, J Power Sources, 238, 501 (2013).

[10] X. P. Xu, S. Chen, M. Shui, L. X. Xu, W. D. Zheng, J. Shu, L. L. Cheng, L. Feng and Y. L. Ren, Ceram Int, 40, 3145 (2014).

[11] C. L. Li, L. Gu, S. Tsukimoto, P. A. van Aken and J. Maier, Adv Mater, 22, 3650 (2010).

[12] C. L. Li, L. Gu, J. W. Tong, S. Tsukimoto and J. Maier, Adv Funct Mater, 21, 1391 (2011).

[13] B. J. Li, Z. J. Cheng, N. Q. Zhang and K. N. Sun, Nano Energy, 4, 7 (2014).

[14] J. Liu, W. Liu, S. M. Ji, Y. L. Wan, M. Z. Gu, H. Q. Yin and Y. C. Zhou, Chem-Eur J, 20, 5815 (2014).

[15] L. Di Carlo, D. E. Conte, E. Kemnitz and N. Pinna, Chem Commun, 50, 460 (2014).

[16] B. J. Li, N. Q. Zhang and K. N. Sun, Small, 10, 2039 (2014).

[17] J. L. Tan, L. Liu, H. Hu, Z. H. Yang, H. P. Guo, Q. L. Wei, X. Yi, Z. C. Yan, Q. Zhou, Z. F. Huang, H. B. Shu, X. K. Yang and X. Y. Wang, J Power Sources, 251, 75 (2014).

[18] C. L. Li, L. Gu, J. W. Tong and J. Maier, Acs Nano, 5, 2930 (2011).

[19] T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992).

[20] R. Martel, T. Schmidt, H. R. Shea, T. HertelandP. Avouris, Appl Phys Lett, 73, 2447 (1998).

[21] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, Nature, 391, 62 (1998).

[22] Y. Wang, F. Wei, G. H. Luo, H. Yu and G. S. Gu, Chem Phys Lett, 364, 568 (2002).

[23] M. Kumar and Y. Ando, Chem Phys Lett, 374, 521 (2003).

[24] L. P. Biro, Z. E. Horvath, L. Szalmas, K. Kertesz, F. Weber, G. Juhasz, G. Radnoczi and J. Gyulai, Chem Phys Lett, 372, 399 (2003).

[25] L. Liu, M. Zhou, L. H. Yi, H. P. Guo, J. L. Tan, H. B. Shu, X. K. Yang, Z. H. Yang and X. Y. Wang, J Mater Chem, 22, 17539 (2012).

[26] L. Wang, X. M. He, W. T. Sun, J. L. Wang, Y. D. Li and S. S. Fan, Nano Lett, 12, 5632 (2012).

[27] L. Wang, W. T. Sun, X. Y. Tang, X. K. Huang, X. M. He, J. J. Li, Q. W. Zhang, J. Gao, G. Y. Tian and S. S. Fan, J Power Sources, 244, 94 (2013).

[28] J. Cao, L. Wang, X. M. He, M. Fang, J. Gao, J. J. Li, L. F. Deng, H. Chen, G. Y. Tian, J. L. Wang and S. S. fan, J Mater Chem A, 1, 5955 (2013).

[29] T. Li, L. Li, Y. L. Cao, X. P. Ai and H. X. Yang, J Phys Chem C, 114, 3190 (2010).

[30] A. Pistone, A. Ferlazzo, M. Lanza, C. Milone, D. Lannazzo, A. Piperno, E. Piperopoulous and S. Galvagno, Journal of Nanoscience and Nanotechnology, 12, 5054 (2012).

[31] N. T. Hung, I. V. Anoshkin, A. P. Dementjev, D. V. Katorov and E. G. Rakov, Inorganic Materials, 44, 219 (2008).

[32] A. C. Ferrari and J. Robertson, Phys Rev B, 64, 075414 (2001).

[33] Y. P. Zhao, X. Y. Li, L. Liu and F. H. Chen, Carbohydrate Polymers, 72, 144 (2008).

[34] J. Liang, A. Safriet, S. Briley and M. Roselius, J Fluorine Chem, 79, 53 (1996).

[35] W. Z. Xu, C. T. Johnston, P. Parker and S. F. Agnew, Clays and Clay Minerals, 48, 120 (2000).

[36] B. J. Saikia and G. Parthasarathy, Journal of Modern Physics, 1, 206 (2010).

[37] G. S. Kang, H. J. Ko, C. K. Choi and C. S. Chang, Journal of the Korean Physical Society, 42, 676 (2003).

[38] P. K. Reddy, K. Mukkanti and D. M. Rao, Oriental Journal of Chemistry, 29, 1015 (2013).

[39] Y. Ma and S. H. Garofalini, J Am Chem Soc, 134, 8205 (2012).

[40] F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. G. Zhang, L. J. Wu, V. Volkov, D. Su, B. Key, M. S. Whittingharn, C. P. Grey, G. G. Amatucci, Y. M. Zhu and J. Graetz, J Am Chem Soc, 133, 18828 (2011).

[41] X. L. Li, F. Y. Kang, X. D. Bai and W. Shen, Electrochem Commun., 9, 663 (2007).