Rapid Synthesis of Water-soluble NiCl2 Nanorods via Recrystallization for Super Capacitors Applications

Rapid Synthesis of Water-soluble NiCl2 Nanorods via Recrystallization for Super Capacitors Applications

JiaChao Xing
YanLi Zhu*
QingJie Jiao

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Corresponding Author Email: 
zhuyanli1999@bit.edu.cn
Page: 
209-211
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.391
Received: 
4 April 2014
| |
Accepted: 
1 May 2014
| | Citation
Abstract: 

Highly uniform NiCl2 nanorods were synthesized successfully via recrystallization and employed as electrode materials for super capacitors applications. The water-soluble Ni/NiCl2 electrode proves to show typical pseudocapacitive characteristics and delivers a very high specific capacitance of 1182.7 F g-1 at 2 A g-1. The charge storage and conversion process initiates from the chemically combination of Ni2+ and OH-, and maintains a reversible redox reaction of Ni(II) ↔ Ni(III) on the electrode. It opens a new insight into the fabrication of multifarious water-soluble inorganic salts for super capacitors applications using the ionic electro negativity parameter as the theoretical guideline.

Keywords: 

nickel chloride, ionic electro negativity, pseudocapacitance, super capacitors, energy storage

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51304024 and 11172042 ).

  References

[1] G.X. Pan, X.H. Xia, F. Cao, P.S. Tang, H.F. Chen, Electrochem. Commun., 34, 146 (2013).

[2] L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun., 2, 381 (2011).

[3] M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale, 5, 72 (2013).

[4] J. Yang, X. Duan, Q. Qin, W. Zheng, J. Mater. Chem. A, 1, 7880 (2013).

[5] K. Chen, Y. Yang, K. Li, Z. Ma, Y. Zhou, D. Xue, ACS Sustainable Chem. Eng., 2, 440 (2013).

[6] Y.R. Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, PCCP, 5, 1644 (2003).

[7] G. Zhang, L. Yu, H.E. Hoster, X.W. Lou, Nanoscale, 5, 877 (2013).

[8] B. Ren, M. Fan, Q. Liu, J. Wang, D. Song, X. Bai, Electrochim. Acta, 92, 197 (2013).

[9] J.B. Wu, R.Q. Guo, X.H. Huang, Y. Lin, J. Power Sources, 243, 317 (2013).

[10] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater., 22, 2632 (2012).

[11] K.Y. Li, D.F. Xue, J. Phys. Chem. A, 110, 11332 (2006).