Effects on Nafion® 117 Membrane using Different Strong Acids in Various Concentrations

Effects on Nafion® 117 Membrane using Different Strong Acids in Various Concentrations

L. NapoliM.J. Lavorante J. Franco A. Sanguinetti H. Fasoli 

Escuela Superior Técnica del Ejército, C1426AAA, Capital Federal, Argentina

Instituto de Investigaciones Científicas y Técnicas para la Defensa, B1603ALO, Villa Martelli, Provincia de Buenos Aires, Argentina

Pontificia Universidad Católica Argentina de los Buenos Aires, C1107AAZ, Capital Federal, Argentina

Corresponding Author Email: 
laura.napoli.ln@gmail.com
Page: 
151-156
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.4
Received: 
30 September 2012
|
Accepted: 
19 December 2012
|
Published: 
30 July 2013
| Citation
Abstract: 

The effects of the acid nature and its concentration on the physico chemical properties of the membranes were studied. How these parameters impact the performance of Nafion 117 as a polymer Electrolyte membrane is shown.

In particular the effect of this membrane treatment on its properties was studied with the following five strong acids: -Nitric, Sulphuric, Perchloric, Phosphoric or Hydrochloric acid- in six different concentrations.M, 0.05 M, 0.25 M, 0.5 M, 0.75 M and 1 M 0.025- :

It was found that the membrane shows a similar behaviour when it is treated with different strong acids, incorporating between 16 to 21 molecules of water depending on the concentration of the acid. The results show that the effect of the different concentrations on the mem- brane behaviour is remarkable. This leads to the conclusion that the best treatment is to use solutions 0.025 M and 0.05 M (twenty times more diluted than the most concentrated solution tested in the experience) of the strong acid.

It was also shown that after the membrane hydration its size increases by 10 percent (average).

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] Q. Duan, H. Wang, J. Benziger. Journal of Membrane Science, 392, 88 (2011).

[2] O. Savadogo, Journal of New Materials for Electrochemical Systems 1, 47 (1998).

[3] O. Savadogo, Journal of Power Sources, 127, 135 (2004).

[4] B. Tazi, O. Savadogo, Electrochimica Acta, 45, 4329 (2000).

[5] K.A. Mauritz and R.B. Moore, Chem. Rev., 104, 4535 (2004).

[6] D. Aili, M.K. Hansen, C. Pan, Q. Li, E. Christensen, J.O. Jense, N.J. Bjerrum, International Journal of Hydrogen Energy, 36, 6985 (2011).

[7] G. J. Elfring, H. Struchtrup, Journal of Membrane Science, 297, 190, (2007).

[8] M.J. Lavorante, B. Scalise, C. López, A. Sanguinetti, J. Franco, H. Fasoli. Proceeding of HYFUSEN, Argentina, 2009.

[9] P. Choi, Proceeding of dissertation at Worcester Polytechnic Institute, April 2004.

[10] L. Gierke, Proceeding of 152nd Meeting of the Electrochemical Society Extended Abstracts Atlanta, GA, Abstract Nº 438, 1977.

[11]K. Mauritz, C. Hora, A. Hopfinger, Proceeding of Polym. Prep. Am. Chem. Soc. Div. Polym. Chem. 19, 324 (1978).

[12] H. Yeager, A. Steck, Journal Electrochem. Soc., 128, 1880 (1981).

[13] C. Heitner-Wirguin, Journal Membrane Science, 120, 1 (1996).

[14] K.D. Kreuer. Journal of Membrane Science, 185, 29 (2001). 

[15] P.W.  Majsztrik,  M.  Barclay  Satterfield,  A.B.  Bocarsly, J.B. Benziger, Journal of Membrane Science, 301, 93 (2007). 

[16] M.  Cappadonia,  J.  Wilhelm  Erning,  S.M.  Seberi  Niaki,  U. Stimming, Solid State Ionics, 77, 65 (1995).