Thermodynamic Analysis of the Absorption Enhanced Steam Reforming of Biofuel Model Compounds

Thermodynamic Analysis of the Absorption Enhanced Steam Reforming of Biofuel Model Compounds

Virginia Collins-Martínez Miguel A. Escobedo Bretado Jesús Salinas Gutiérrez Miguel Meléndez Zaragoza Alejandro López Ortiz 

Departamento de Materiales Nanoestructurados, Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109, México

Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120, México

Page: 
239-251
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.25
Received: 
28 November 2012
|
Accepted: 
7 February 2013
|
Published: 
8 July 2013
| Citation
Abstract: 

Thermodynamic analysis of the steam reforming of biofuel model compounds using CaO, and Na2ZrO3, as CO2 absorbents was performed to determine favorable operating conditions to produce a high hydrogen ratio (HR, molsH2 produced/molsHC fed) and concen- tration (%H2) gas product. Biofuel compounds (HC’s) used were: 2,4-dimethylphenol (DMP), furfural (FUR) and vanillin (VAI). Equilib- rium product compositions were studied at 300-850°C, steam to hydrocarbon molar ratio (S/HC) and CO2 absorbent at 1 atm. S/HC varied from stoichiometric; 15:1 (DMP), 13:1 (VAI) and 8:1 (FUR) to twice and trice their stoichiometric values, respectively. At stoichiometric S/HC ratios results indicate significant carbon formation with conventional reforming at T < 600°C, with no carbon formation using ab- sorbents with any of the HC’s. The use of a CO2 absorbent resulted in an increase in HR and H2 purity of about 3 and 30% higher, respec- tively. The order from high to low HR was: VA>DMP>FUR.

Keywords: 

Absorption-Enhanced-Reforming, Biofuel, CO2-absorbent, thermodynamic analysis

1. Introduction
2. Simulation Calculations
3. Results and Discussion
4. Optimal Operating Conditions for Aesr Process
5. Conclusions
  References

[1] Q. Zhang, J. Chang, T. Wang, Y. Xu, Energy Convers. Man- age., 48, 1 (2007).

[2] A. Seda, K. Mustafa, K. Ahmet, Int. J. Hydrogen Energy, 34, 4 (2009).

[3] C. Wu, M. Sui, Y. Yan. Chem. Eng. Technol., 31, 12 (2008).

[4] E. Ch. Vagia, A.A. Lemonidou. Int. J. Hydrogen Energy, 32, 2 (2007).

[5] C. Wu, Y. Yan, T. Li , W. Qi, Chin. J. Process Eng., 7, 6 (2007).

[6] A.R. Brun-Tsekhovoi, A.N. Zadorin, Y.R. Katsobashvili, S.S. Kourdyumov, The process of catalytic steam-reforming of hy- drocarbons in the presence of carbon dioxide acceptor. In: Pro- ceedings of the world hydrogen energy conference, New York: Pergamon Press, 2, 885 (1986).

[7] J.R. Hufton, S. Mayorga, S. Sircar, AIChE J., 45, 2 (1999).

[8] B. Balasubramanian, A. Lopez-Ortiz, S. Kaytakouglu, D.P. Harrison, Chem. Eng. Sci., 54, 15 (1999).

[9] J.C. Abandes, Chem. Eng. J., 9, 3 (2002).

[10] R.R. Davda, J.W. Shabaker, G.W. Huber, J.A. Dumesic, Appl. Catal. B: Environ., 56, 1 (2005).

[11] K.B. Yi, D.P. Harrison, Ind. Eng. Chem. Res., 44, 1665 (2005). 

[12] M. Kato, S. Yoshikawa, K. Nakagawa, J. Mater. Sci. Lett., 21, 6 (2002).

[13] A. López, N. Pérez, A. Reyes, D. Lardizábal, Sep. Sci. Tech- nol., 39, 3563 (2004).

[14] C.M. Kinoshita, S.Q. Turn, Int. J. Hydrogen Energy, 28, 10 (2003).

[15] A.A. Iordanidis, P.N. Kechagiopoulos, S.S. Voutetakis, A.A. Lemonidou, I.A. Vasalos, Int. J. Hydrogen Energy, 31, 8. (2006).

[16] C. RiochE, S. Kulkarni, F.C. Meunier, J.P. Breen, R. Burch, Appl. Catal., B, 61, 1 (2005).

[17] F. Bimbela, M. Oliva, J. Ruiz, L. Garcia, J. Arauzo, J. Anal. Appl. Pyrolysis, 79, 1 (2007).

[18] M. Marquevich, S. Czernik, E. Chornet, D. Montane, Energy Fuels, 13, 1160 (1999).

[19] D. Wang, D. Montane, E. Chornet, Appl. Catal., A, 143, 2 (1996).

[20] S. Yaman, Energy Convers. Manage., 45, 5 (2004).

[21] A.C. Basagiannis, X.E. Verykios, Int. J. Hydrogen Energy, 32, 15 (2007).

[22] C. Resini, L. Arrighi, M.C.H. Delgado, M.A.L. Vargas, L.J. Alemany, P. Riani, Int. J. Hydrogen Energy, 31, 1 (2006).

[23] D.C. Rennard, P.J. Dauenhauer, S.A. Tupy, L.D. Schmidt, Energy Fuels, 22, 1318 (2008).

[24] P.N. Kechagiopoulos, S.S. Voutetakis, A.A. Lemonidou, I.A. Vasalos, Catal. Today, 127, 1 (2007).

[25] S. Adhikari, S. Fernando, S.R. Gwaltney S, S.D. Filip To, R.M. Bricka, P.H. Steele, Int. J. Hydrogen Energy, 32, 14 (2007). 

[26] A. Ishihara, E.W. Qian, I, N. Finahari, I.P. Sutrisna, T. Kabe, Fuel, 84, 12 (2005).

[27] M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy, 32, 15 (2007).

[28] S. Jarungthammachote, A. Dutta, Manage., 49, 1345 (2008). 

[29] A. Roine, Chemical reaction and equilibrium software with extensive thermo-chemical database., Outokumpu HSC 6.0 Chemistry for windows, (2010).

[30] Y. Chang-Feng, H. En-Yuan, C. Chi-Liu, Int. J. Hydrogen Energy, 35, 7 (2010).

[31] M.R. Mahishi, D.Y. Goswami, Int. J. Hydrogen Energy, 32, 14 (2007).

[32] C.F. Yan, E.Y. Hu, C.L. Cai, Int. J. Hydrogen Energy, 35, 7 (2010).

[33] S. Aktaş, M. Karakaya, A.K. Avci, Int. J. Hydrogen Energy, 34, 4 (2009).

[34] A. Lopez-Ortiz, D.P. Harrison, Ind. Eng. Chem. Res., 40, 5102 (2001).

[35] A. Silaban, D.P. Harrison, Chem. Eng. Comm., 146, 149 (1996).

[36] C. Han, D.P. Harrison, Sep. Sci. Technol., 32, 1 (1997).

[37] A. Bandi, M. Spech, P. Sichler, N. Nicoloso, In situ gas condi- tioning in fuel reforming for hydrogen generation., 5th Interna- tional Symposium on Gas Cleaning at High Temperature. Mor- gantown West Virginia., USA, September 17-20, (2002), DOE/NETL-2003/1185; (2003) Available at: http://www.zsw- bw.de/en/docs/research/REG/pdfs/REG_5th_ISGC_2002.pdf.

[38] Y. Ding, E. Alpay, Process Saf. Environ. Prot., 79, 1 (2001). 

[39] K. Nakagawa, T.J. Ohashi, J. Electrochem. Soc., 145, 4 (1998). 

[40] M. Kato ,S. Yoshikawa , K. Esaki, K. Nakagawa, Novel CO2 absorbents using lithium-containing oxides. In Toshiba Corpo- ration., INTERMAC, Japan Electric Measuring Instruments Manufacturers' Association, Joint Technical Conference, SE-3: 1021 (2001).

[41] E. Ochoa-Fernández, C. Lacalle-Vilà, T. Zhao, M. Rønning, D. Chen, Stud. Surf. Sci. Catal., 167, 159 (2007).

[42] J.P. Jakobsen, E. Halmøy, Energy Procedia, 1, 1 (2009).

[43] A. Lima da Silva, I.L. Müller, Int. J. Hydrogen Energy, 36, 3 (2011).

[44] M. Li, Int. J. Hydrogen Energy, 34, 23 (2009).

[45] D.P. Harrison, The Role of Solids in CO2 Capture: a Mini Review, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies Vancouver, Canada; 1101-1106 (2004).

[46] S. Stendardo, P.U. Foscolo, Chem. Eng. Sci., 64, 10, (2009). 

[47] E. Ochoa-Fernández, G. Haugen, T. Zhao, M.. Rønning, I. Aartun, B. Børresen, E. Rytter, M. Rønnekleivb, D. Chen, Green Chem., 9, 654 (2007).

[48] R. Xiong, J. Ida, Y.S. Lin, Chem. Eng. Sci., 58, 19 (2003).

[49] E. Ochoa-Fernández, H.K. Rusten, H.A. Jakobsen, M. Rønning, A. Homen, D. Chen, Catal. Today, 106, 1 (2005). [50] M.H.M. Halabi, Sorption Enhanced Catalytic Reforming of Methane for Pure Hydrogen Production Experimental and Modeling, Ph. D. Dissertation, Technische Universiteit Eindho- ven, ISBN: 978-90-386-2454-9, (2011).