Facile Synthesis of Donut-like TiO2-SnO2 Nanocomposite Microspheres by a Two-step Hydrothermal Reaction and Subsequent Spray Drying Process and Its Electrochemical Lithium Storage Properties

Facile Synthesis of Donut-like TiO2-SnO2 Nanocomposite Microspheres by a Two-step Hydrothermal Reaction and Subsequent Spray Drying Process and Its Electrochemical Lithium Storage Properties

Mengyao Tian Chunju Lv* Jie Xu Bing Guo Da Chen Kangying Shu 

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China

Corresponding Author Email: 
25 December 2012
4 February 2013
3 April 2013
| Citation

Donut-like TiO2-SnO2 nanocomposite microspheres were successfully synthesized via a facile two-step hydrothermal reaction and subsequent spray drying. The protonated titanate nanowires with H2Ti3O7 phase in the nanocomposite precursor transformed into not anatase TiO2 but TiO2(B) crystal structure even after calcination at 400 C. And the substitutional solid solution (Sn, Ti)O2 with the same tetragonal rutile structure as SnO2 was formed. Moreover, the hierarchical donut-like structure in TiO2-SnO2 nanocomposite microspheres constructed by the second-step hydrothermal and spray drying treatment was maintained after calcination at 400 C. The electrochemical test showed that the as-obtained TiO2-SnO2 nanocomposite microspheres reached an initial discharge capacity of 640 m Ah g-1 at a current density of 40 mA.g-1, which is much higher than the theoretical capacity of TiO2(B).


TiO2-SnO2 nanocomposite; hydrothermal reaction; spray drying; electrochemical performance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgment

[1] H.Bin Wu, J.S. Chen, H.H. Hong, X.W. Lou, Nanoscale, 4, 2526 (2012).

[2] L. Kavan, M. Gratzel, J. Rathousky, A. Zukal, J. Electrochem. Soc., 143, 394 (1996).

[3] H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm,

A.Hagfeldt, S.E. Lindquist, J. Phys. Chem., B, 101, 7717 (1997).

[4] R.van de Krol, A. Goossens, E.A. Meulenkamp, J. Electrochem. Soc., 146, 3150 (1990).

[5] M. Wagemaker, G.J. Kearley, A.A.van Well, H. Mutka, F.M. Mulder, J. Am. Chem. Soc., 125, 840 (2003).

[6] J.S. Chen, X.W. Lou, J. Power Sources, 195, 2905 (2010).

[7] M. Pfanzelt, P. Kubiak, M. Fleischhammer, M. Wohlfahrt- Mehrens, J. Power Sources, 196, 6815 (2011).

[8] D. Dambournet, I. Belharouak, K. Amine, Chem. Mater., 22, 1173 (2010).

[9] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Int. Ed., 43, 2286 (2004).

[10] A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P.G. Bruce, Adv. Mater., 17, 862 (2005). 

[11] G. Armstrong, A.R. Armstrong, J. Canales, P.G. Bruce, Chem. Commun., 19, 2454 (2005).

[12] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, J. Power Sources, 146, 501 (2005).

[13] S.H. Liu, H.P. Jia, L. Han, J.L. Wang, P.F. Gao, D.D. Xu, J. Yang, S.N. Che, Adv. Mater., 24, 3201 ( 2012).

[14] Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li, H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui, G.T Zou, Inorg. Chem., 47, 9870 (2008).

[15] Q.L. Wu, J.C. Li, R.D. Deshpande, N. Subramanian, S.E. Ran- kin, F.Q Yang, Y.T. Cheng, J. Phys. Chem. C, 116, 18669 (2012).

[16] S.M. Dong, H.B. Wang, L. Gu, X.H. Zhou, Z.H. Liu, P.X. Han, Y. Wang, X. Chen, G.L. Cui, L.Q. Chen, Thin Solid Films, 519, 5978 (2011).

[17] J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D.Y. Luan, S. Mad-havi, F.Y.C. Boey, L.A. Archer, X.W. Lou, J. Am. Chem. Soc., 132, 6124 (2010).

[18] J.F. Ye, W. Liu, J.G. Cai, S. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, J. Am. Chem. Soc., 133, 933 (2011).

[19] H.E. Wang, H. Cheng, C.P. Liu, X. Chen, Q.L. Jiang, Z.G. Lu, Y.Y. Li, C.Y. Chung, W.J. Zhang, J.A. Zapien, L. Martinu, I. Bello, J. Power Sources, 196, 6394 (2011).

[20] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, J.M. Tarascon, J. Mater. Chem., 17, 3759 (2007).

[21] J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Mad- havi, Y.H. Yang, X.W. Lou, J. Phys. Chem. C, 113, 20504 (2009).

[22] J.S. Chen, L.A. Archer, X.W. Lou, J. Mater. Chem., 21, 9912 (2011).

[23] X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater., 18, 2325 (2006).

[24] X.W. Lou, C.M. Li, L.A. Archer, Adv. Mater., 21, 2536 (2009).

[25] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, Chem. Mater., 21, 2868 (2009).

[26] S.Y. Vassiliev, A.I. Yusipovich, Y.E. Rogynskaya, F.K. Chibi- rova, A.M. Skundin, T.L. Kulova, J. Solid State Electrochem., 9, 698 (2005).

[27] J. Jamnik, R. Dominko, B. Erjavec, M. Remskar, A. Pintar, M. Gaberscek, Adv. Mater., 21, 2715 (2009).

[28] Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, RSC Adv., 1, 1834 (2011).

[29] Y.M. Lin, R.K. Nagarale, K.C. Klavetter, A. Heller, C. Buddie Mullins, J. Mater. Chem., 22, 11134 (2012).

[30] X.M. Wu, S.C. Zhang, L.L. Wang, Z.J. Du, H. Fang, Y.H. Ling, Z.H. Huang, J. Mater. Chem., 22, 11151 (2012).

[31] S.J. Ding, J.S. Chen, X.W. Lou, Adv. Funct. Mater, 21, 4120 (2011).

[32] Y.F. Wang, M.Y. Wu, W.F. Zhang, Electrochimica Acta, 53, 7863 (2008).

[33] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, J. Power Sources, 117, 131 (2003).