Evaluation of the Corrosion Resistance of Fe40Al60 Intermetallics in Molten Carbonate (Li+K)

Evaluation of the Corrosion Resistance of Fe40Al60 Intermetallics in Molten Carbonate (Li+K)

G. Pedroza A. Martinez-Villafane M. A. Espinoza-Medina M. A. Rivera P. J. Sebastian

Centro de Investigación en Materiales Avanzados, División de Ciencia e Ingeniería Ambiental, Miguel de Cervantes 120, Complejo industrial Chihuahua, 31109 Chihuahua

Universidad Politecnica del Estado de Guerrero, Carr. Taxco-Iguala s/n, Col. Arroyo, Taxco de Alarcon, Guerrero

Facultad de Ingeniería Mecánica, UMSNH, Santiago Tapia 403 Col. Centro, C.P. 58000 Morelia, Michoacán

Centro de Investigación en Energía-UNAM, 62580, Temixco, Morelos

Corresponding Author Email: 
sjp@cie.unam.mx
Page: 
21-30
|
DOI: 
https://doi.org/10.14447/jnmes.v15i1.84
Received: 
11 August 2011
| |
Accepted: 
30 October 2011
| | Citation
Abstract: 

Alloys of the intermetallic material based on Fe40Al60 and the alloys formed with addition of Ag constitute a new alternative to improve the problems of corrosion resistance and electrical conductivity. The electrochemical characterization was employed to evaluate the corrosion resistance of the materials for being used as bipolar plates in molten carbonate fuel cells (MCFC). These characterizations were done under similar conditions as the working environment of the molten carbonate fuel cell (MCFC). The working environment of the standard molten carbonate fuel cell was simulated by the use of molten salts of 62 mol.% Li2CO3 and 38 mol.% K2CO3 at the temperature of 650 ºC. Alloys included Fe40Al60 with additions of 1, 3 and 5 weight % of Ag. The results obtained indicate that this material is promising for its use as bipolar plates in MCFC.

Keywords: 

molten carbonate fuel cell, bipolar plate, Fe40Al60 Intermetallics, Ag

1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was carried out as part of the projects IN103410 and 100212 with financial support from DGAPA-UNAM and CONACYT respectively.

  References

[1] Fuel Cell Handbook, sixth ed., EG&G Technical Services Inc., U.S. Department of Energy, DE-AM26-99FT40575, November, 2002.

[2] P. Capobianco, B. Passalacqua, A. Torazza, Mater. Eng., 10, 25 (1999).

[3] A.J. Appleby, F.R. Foulkes, Fuel Cells Hand Book, Von Nostrand Reimbold, New York, 1989.

[4] K. Joon, J. Power Sources, 71, 12 (1998).

[5] K. Nakagawa, S. Kihara, T. Kobayashi, Proceedings of the 11th International Corrosion Congress, Florence, Italy, 1990.

[6] R.A. Donado, L.G. Marionowski, H.C. Maru, J.R. Selman, J. Electrochem. Soc., 131, 2541 (1984).

[7] C. Yuh, R. Johnson, M. Farouque, H. Maru, J. Power Sources, 56, 1 (1984).

[8] K. Nakagawa, S. Ihara, S. Ito, Corros. Eng., 37, 411 (1988).

[9] R.A. Donado, L.G. Marianowski, H.C. Maru, J.R. Selman, J.Electrochem. Soc., 131, 2535 (1984).

[10] P.F. Tortorelli, P.S. Bishop, in: R.H. Jhones, R.E. Ricker (Eds.), Environmental Effects on Advanced Materials, The Minerals, Metals and Materials Society, Warrendale, 1991, p. 91.

[11] P.F. Tortorelli, K. Natesan, Mater. Sci. Eng., A258, 115 (1998).

[12] M. Salazar, A. ALbiter, F. Rosas, R. Perez, Mater. Sci. Eng., 351ª, 154 (2003).

[13] C. Cuevas-Arteaga, A.J. Uruchurtu-Chavar, J. Porcayo-Calderon, G. Izquierdo-Montalvo, J. González, Corrosion Science, 46, 2663 (2004).

[14] H. Wang, M.P. Brady, G. Teeter, J. Power Sources, 138, 86 (2004).

[15] T.S.N. Sankara Narayanan, Rev. Adv. Mater. Sci., 9, 130 (2005).

[16] D.H. Mesa, S. Amilton, T. Alejandro, T. Andre, Wear, 255, 139 (2003).