Shorting Effects of LiFePO4 Cathode in Lithium Ion Batteries

Shorting Effects of LiFePO4 Cathode in Lithium Ion Batteries

Yan Wang

Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, MA 01609

Corresponding Author Email: 
yanwang@wpi.edu
Page: 
209-212
|
DOI: 
https://doi.org/10.14447/jnmes.v14i4.91
Received: 
18 May 2011
|
Accepted: 
7 June 2011
|
Published: 
28 June 2011
| Citation
Abstract: 

Co3(PO4)2 or AlPO4 coating layers were formed on the surface of LiNi0.8Co0.15Al0.05O2cathode material by in situ chemical method and calcination at 700°C to improve the electrochemical cyclability and structural stability during charge-discharge process of the cathode. The structure and electrochemical properties of the pristine LiNi0.8Co0.15Al0.05Ocathode materials and the metal phosphate coated-cathode materials were investigated by X-ray powder diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller method, cyclic voltammetry, and galvanostatic charge-discharge test. Co3(PO4)2-LiNi0.8Co0.15Al0.05O2 and AlPO4- LiNi0.8Co0.15Al0.05O2 cathode showed the improved reversibility compared with the pristine cathode material. It is attributed to the structural stability of metal phosphate coated LiNi0.8Co0.15Al0.05O2. In particular, Co3(PO4)2-LiNi0.8Co0.15Al0.05O2 showed a more stable rate capability than the pristine LiNi0.8Co0.15Al0.05O2 and AlPO4-LiNi0.8Co0.15Al0.05O2 at high C-rate.

Keywords: 

lithium ion batteries, LiFePO4, shorting, charging, discharging

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
  References

[1] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).

[2] M. Armand, J.M. Tarascon, Nature, 451, 652 (2008).

[3] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).

[4] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nature Materials, 1, 123 (2002).

[5] B. Ellis, W.H. Kan, W.R.M. Makahnouk and L.F. Nazar, J. Mater. Chem., 17, 3248 (2007).

[6] B. Kang, G. Ceder, Nature, 458, 190 (2009).

[7] S. Yang, P.Y. Zavalij and M.S. Whittingham, Electrochem. Commun., 3, 505 (2001).

[8] S. Yang, Y. Song, P.Y. Zavalij and M.S. Whittingham, Electrochem. Commun., 4, 239 (2002).

[9] S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 252, 119 (2003).

[10] N.C.Y. Ravet, M.J. Fagnan, S. Besner, M. Gauthier &M. Armand, J. Power Sources, 97, 503 (2001).

[11] P.S. Herle, B. Ellis, N. Coombs and L.F. Nazar, Nat. Mater., 3, 147 (2004).

[12] H. Huang, S.-C. Yin and L.F. Nazar, Electrochem. Solid-State Lett., 4, A170 (2001).

[13] R. Dominiko, M. Bele, M. Gaberscek, M. Remskar, S. Pejovnik and J. Jamnik, J. Electrochem. Soc., 152, A607 (2005).

[14] A. Yamada, S.C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001).

[15] M.S. Islam, D.J. Driscoll, C.A.J. Fisher and P.R. Slater, Chem. Mater., 17, 5085 (2005).

[16] J. Chen and M.S. Whittingham, Electrochem. Commun., 8, 855 (2006).

[17] D. Morgan, A. Van der Ven & G. Ceder, Electrochem. Solid State Lett., 7, A30 (2004).

[18] C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, Electrochem. Solid State Lett., 9, A352 (2006).

[19] D.H. Kim and J. Kim, Electrochem. Solid State Lett., 9, A439 (2006).