OPEN ACCESS
In this work, composite membranes were prepared from a mixture of Nafion® ionomer with mesoporous (SBA-15) and microstructured silica (SiO2). The silica-based materials were synthesized using the sol-gel technique and their properties were characterized by TEM, BET, SEM and XRD. A glass cell with two chambers was used to evaluate the permeability of methanol of the composite membranes and its performance was compared with a commercial Nafion 115 membrane. The composite membranes showed smaller value of methanol permeability (around 19%) than that obtained when was used a commercial membrane. In terms of the fuel cell performance, the composite membranes showed a larger maximum power density (62 and 29 mWcm-2 for the SiO2 and SBA-15 composite membrane respectively) than that obtained for the commercial membrane at high temperature conditions (100°C).
composite membrane, NafionDMFC, High temperature DMFC
A. Alvarez and C. Guzmán are grateful to Council for Science and Technology CONACYT for graduate fellowship. The authors thank the Mexican Council for Science and Technology for financial support through Fomix-Chihuahua Grant CHIH-2009-C02-127461 and SEP-CONACYT Grant 2009-133310.
[1] V. Baglio, A.S. Aricò, A. Di Blasi, V. Antonucci, P.L. Antonucci, S. Licoccia, E. Traversa, F.Serraino Fiory, Electrochim. Acta, 50, 1241 (2005).
[2] V. Baglio, A.Di Blasi, A.S Aricò, V. Antonucci, P.L. Antonucci, F. Nannetti, V. Tricoli, Electrochim. Acta, 50, 5181 (2005).
[3] W. Xu, T. Lu, C. Liu, W. Xing, Electrochim. Acta, 50, 3280 (2005).
[4] R. Gosalawit, S. Chirachanchai, S. Shishatskiy, S.P. Nunes, Solid State Ionics, 178, 1627 (2007).
[5] C-Y Chen, J.I. Garnica-Rodriguez, M.C. Duke, R.F. Dalla Costa, A.L. Dicks, J.C. Diniz da Costa, J. Power Sources, 166, 324 (2007).
[6] V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources, 169, 221 (2007).
[7] S.W. Tay, X. Zhang, Z. Liu, L. Hong, S. Hwa Chan, J. Membrane Sci., 321, 139 (2008).
[8] C. Li, G. Sun, S. Ren, J. Liu, Q. Wang, Z. Wu, H. Sun, W. Jin, J. Membrane Sci., 272, 50 (2006).
[9] J. Wu, Z. Cui, C. Zhao, H. Li, Y. Zhang, T. Fu, H. Na, W. Xing, Int. J. Hydrogen Energ., 34, 6740 (2009).
[10] Y-F. Lin, C-Y Yen, C-C. Ma, S-H Liao, C-H Lee, Y-H Hsiao, H-P Lin, J. Power Sources, 171, 388 (2007).
[11] J. González-Hernández, J.F.Pérez Robles, F. Ruiz, J.R. Martínez, Sup.Vac., 1, 11 (2000).
[12] R. Pérez-Hernández, J. Arenas-Alatorre, D. Mendoza-Anaya, A. Gómez-Cortés y G. Díaz., Rev. Mex. Fís., 50, 80 (2008).
[13] K. Flodstrom, V. Alfredsson, Micropor. Mater., 59, 167 (2003).
[14] R. Huirache-Acuña, B. Pawelec, E. Rivera-Muñoz, R. Nava, J. Espino, J.L.G. Fierro, Appl. Catal. B-Environ, 168, 92 (2009).
[15] R. Nava, B. Pawelec, P. Castaño, M.C. Álvarez-Galván, C.V. Loricera, J.L.G. Fierro, Appl. Catal. B-Environ, 92, 154 (2009).
[16] A.S. Aricò, V. Baglio, A. Di Blasi, P. Creti, P.L. Antonucci, V. Antonucci, Solid State Ionics, 161, 251 (2003).
[17] S. Reichman, L. Burstein, E. Peled, J. Power Sources, 179, 520 (2008).
[18] Saccà, I. Gatto, A. Carbone, R. Pedicini, E. Passalacqua, J.Power Sources, 163, 47 (2006).
[19] Tao Li, Yong. Yang, J. Power Sources, 187, 332 (2009).
[20] R.G. Rodríguez Avendaño, J.A. De Los Reyes, T. Viveros, J.A. Montoya De La Fuente, Catal. Today, 148, 12 (2009).
[21] X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science, 276, 923 (1997).
[22] J. Liu, X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, M. Gong, Chem. Eng. Technol., 21, 97 (1998).
[23] C.E. Fowler, S.L. Burkett, S. Mann, Chem. Commun., 1769 (1997).
[24] V. Di Noto, R. Gliubizzi, E. Negro, G. Pace, J. Phys. Chem. B, 110, 24972 (2006).
[25] G. Gnana Kumar, A.R. Kim, K. Suk Nahm, R, Elizabeth, Int. J. Hydrogen Energ., 34, 9788 (2009).