Kinetic Study of Oxygen Reduction Reaction on Palladium Nanoparticles Supported in Thermally Treated Carbon

Kinetic Study of Oxygen Reduction Reaction on Palladium Nanoparticles Supported in Thermally Treated Carbon

R. Gonzalez HuertaP. Gonzalez Puente O. Solorza Feria 

Instituto Politécnico Nacional, IPN-ESIQIE, Laboratorio de Electroquímica y Corrosión, UPALM, Ed. 8, 07830, México D.F.

Depto. Química, Centro de Investigación y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 México, D.F.

Corresponding Author Email: 
rosgonzalez_h@yahoo.com.mx
Page: 
69-73
|
DOI: 
https://doi.org/10.14447/jnmes.v14i2.112
Received: 
November 04, 2010
| |
Accepted: 
January 22, 2011
| | Citation
Abstract: 

The kinetic study of oxygen reduction reaction (ORR) using palladium nanoparticles supported in thermally-treated Vulcan® carbon as an electrocatalyst was developed in a 0.5 M H2SO4 solution. The Vulcan® carbon was thermally treated at 400oC and 600°C. The Pd supported in thermally treated carbon (Pd/TTC) was synthesized by PdCl2 reduction with NaBH4 in water at 60°C. The thermally treated carbon (TTC) was evaluated by Raman spectroscopy, whereas the morphology of Pd/TTC was characterized by Scanning Electron Microscopy (SEM). The electrochemical activity was studied by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. The RDE result showed a high activity of the Pd/TTC towards the ORR, this reaction proceeds preferentially via a 4e- pathway. On the other hand, the hydrogen peroxide productions were 4.6% and 6.6% for Pd/(TTC at 400°C) and 600°C, respectively.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements

The authors gratefully acknowledge the financial support of IPN (project SIP-20100530) and ICYTDF (PICS08-37). The authors also wish to express their gratitude to Guadalupe Ramos for assistance in the catalytic synthesis and to Tim Godwin of www.manuscriptex.com for the English-language editing. 

  References

[1] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B, 56, 9 (2005).  

[2] J. Oiao, B. Li and J. Ma, J. Electrochem. Soc. B, 436, 156 (2009).

[3] A. Liu, Z. Brady, B. Carter, R. Litteer, B. Budinski, M. Hyun and J. Muller, J. Electrochem. Soc., 155, 979 (2008).

[4] D. Santa Rosa, D. Pinto, V. Silva, R. Silva and C. Rangel, Int. J. Hydrogen Energy, 32, 4350 (2007).

[5] C. Acharya, W. Li, Z. Liu, G. Kwon, C. Turner, A. Lane, D. Nikles, T. Klein, M. Weaver, J. Power Sources, 192, 324 (2009).

[6] V. Collins, R. González, A. López, D. Delgado and O. Solorza, J. New Mat. Electrochem. Systems, 12, 63 (2009).

[7] R.G. González, M. L. Luna, O. Solorza, ECS Transactions, 20, 267 (2009).

[8] G. Ramos, H. Yee, O. Solorza, Inter. J. Hydrogen Energy, 33, 3596 ( 2008 ).

[9] J. Salvador, S. Citalan, O. Solorza, J. Power Sources, 172, 229 (2007).

[10] J. Prabhuram, T. Zhao, Z. Tang, R. Chen, Z. Liang, J. Phys. Chem. B, 110, 5245 (2006).

[11] B. Veisz, L. Toth, D. Teschner, Z. Paal, N. Gyorffy, U. Wild, R. Schlogl, J. Mol. Catal. A: Chem., 238, 56 (2005).

[12] J. Oiao, B. Li and J. Ma, J. Electrochem. Soc. B, 436, 156 (2009).

[13] Ch. Castiglioni and M. Tommasini, Opt. Pura Apl., 40, 169 (2007).

[14] K. Suarez, A. Rodrýguez, S. Duron, O. Solorza, J. Power Sources, 171, 381 (2007).

[15] G. Ramos, O. Solorza, J. Int. Hydrogen Energy, 35, 12105 ( 2010 ).

[16] L. Timperman, Y.J. Feng ,W. Vogel, N. Alonso, Electrochimica Acta, 55, 7558 (2010).

[17] J. Murayama, I. Abe, Electrochimica Acta, 48, 1443 (2003).

[18] V.S. Murthi, R.C. Urian, S. Mukerjee, J. Phys. Chem. B, 108, 11011 (2004).

[19] U. Paulus, T. Schmidt, H. Gasteiger, R. Behm, J. Electro analytic. Chem., 495, 134 (2001).