Preparation and Electrochemical Characterization of Ordered Mesoporous Carbon/PbO Host-guest Composite Electrode Materials for Supercapacitor

Preparation and Electrochemical Characterization of Ordered Mesoporous Carbon/PbO Host-guest Composite Electrode Materials for Supercapacitor

Ji Cheng FengJia Chang Zhao Ping Liu Bo Hejin Tang Jing Li Xu 

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620

Page: 
321-326
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.135
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
2 November 2010
| Citation

OPEN ACCESS

Abstract: 

Ordered mesoporous carbon/PbO host-guest composites were prepared by incipient wetness impregnation method. The XRD, TEM and N2 adsorption/desorption isotherms tests confirm the host-guest structure of the composites. The PbO loading amount affects the structure and electrochemical properties of the composites and the optimum amount of Pb (NO3)2 added is found to be 60 % of that of the saturated solution. Besides, the specific capacitance of the composite (83 F g-1) is more than twice of that of the pristine PbO (37 F g-1) at the scan rate of 5 mV s-1 and is more or less equal to that of the ordered mesoporous carbon at the scan rate of 200 mV s-1 (the specific capacitance of the composite is 58 F g-1), demonstrating excellent rate capability. Furthermore, the composite electrode material shows a stable cycle life in the potential range of 0-0.9 V after 500 cycles.

  References

[1] Y.H. Tian, B.R. Wu, W.Q. Zhang, J. New Mat. Electrochem. Systems, 11, 5 (2008).

[2] C.C. Hu, W.C. Chen, Electrochim. Acta, 49, 3469 (2004).

[3] J.M. Luo, B. Gao, X.G. Zhang, Mater. Res. Bull., 43, 1119 (2008).

[4] C.C. Hu, C.C. Wang, Electrochem. Commun., 4, 554 (2002).

[5] J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, P. Sebastian, J. Power Sources, 160, 1501 (2006).

[6] R.K. Sharma, H.S. Oh, Y.G. Shui, K. Kim, J. Power Sources, 173, 1024 (2007).

[7] Y. Chen, C.G. Liu, C. Liu, G.Q. Lu, H.M. Cheng, Mater. Res. Bull., 42, 1935 (2007).

[8] Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, Y. Kuang, Diamond Relat. Mater., 15, 1478 (2006).

[9] V. Subramanian, H.W. Zhu, B.Q. Wei, Electrochem. Commun., 8, 827 (2006).

[10] J. Yan, Z. Fan, T. Wei, Z. Qie, S. Wang, M. Zhang, Mater. Sci. Eng., B, 151, 174 (2008).

[11] R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim, J. Phys. B:Condens. Matter, 403, 1763 (2008).

[12] E. R-Piñero, V. Khomenko, E. Frackowiak, F. Béguin, Electrochem. Soc., 152, A229 (2005).

[13] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadllah, M. Reda, J. Parmentier, J. Patarin, F. Béguin, Phy. Chem.Sollids, 65, 287 (2004).

[14] H. Zhou, S. Zhu, M. Hibino, I. Honma, J. Power Sources, 122, 219 (2003).

[15] L. Li, H. Song, X. Chen , Electrochim. Acta, 51, 5715 (2006).

[16] C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Beguin, Mater. Sci. Eng., B, 108, 148 (2004).

[17] W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Carbon, 44, 216 (2006).

[18] S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara, Adv Funct Mater, 15, 381 (2005).

[19] H. Huwe, M. Fröba, Carbon, 45, 304 (2007).

[20] S.A. Kazaryan, S.V. Litvinenko, G.G. Kharisov, Electrochem. Soc, 155, A464 (2008).

[21] S.A. Kazaryan, G.G. Kharisov, S.V. Litvinenko, V.I. Kogan, Electrochem. Soc, 154, A751 (2007).

[22] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science, 279, 548 (1998).

[23] H. Huwe, M. Fröba, Micro. Meso. Mater, 60, 151 (2003).

[24] Y. Lei, C. Fournier, J.L. Pascal, F. Favier, Micro. Meso. Mater, 110, 167 (2008).