Preparation of Graphene/polypyrrole Composites for Electrochemical Capacitors

Preparation of Graphene/polypyrrole Composites for Electrochemical Capacitors

Yongqin Han Bing Ding Xiaogang Zhang

College of Material Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Corresponding Author Email: 
azhangxg@163.com
Page: 
315-320
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.134
Received: 
25 July 2010
|
Accepted: 
20 October 2010
|
Published: 
15 November 2010
| Citation
Abstract: 

Graphene/polypyrrole composites are synthesized by in situ polymerization under different mass ratios. The electrochemical performances of graphene, polypyrrole and composites have been investigated. The composites corresponding to the mass ratio 50:50 of graphene to pyrrole deliver an initial capacitance of 223 F/g at a current density of 0.5 A/g. The increased capacitance compared with pristine graphene and polypyrrole could be ascribed to the synergistic effect between graphene and polypyrrole. The cycling stability of the composites is also improved compared with that of polypyrrole. The loss of specific capacitance for the composite electrode is smaller and shows a stable cycle life, capacitance retention of the composites about 80% is found over 1200 cycles.

Keywords: 

Graphene; Polypyrrole; Composites; Electrochemical capacitors

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgments

This work was supported by National Basic Research Program of China (973Program) (No.2007CB209703), National Natural Science Foundation of China (No.20633040, No.20873064) and Postdoctoral Science Foundation of China (No. 20090461108).

  References

[1] B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991).

[2] A. Burke, J. Power Sources, 91, 37 (2000).

[3] P. Simon, Y. Gogotsi, Nat. Mater., 7, 845 (2008).

[4] A.G. Pandolofo, A.F. Hollenkamp, J. Power Sources, 11, 157 (2008).

[5] C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K.Lian, Electrochim. Acta, 53, 675 (2008).

[6] C.M. Yang, J. Am. Chem. Soc., 129, 20 (2007).

[7] V. D. Patake, S. M. Pawar, V. R. Shinde, T. P. Gujar, C.D. Lokhande, Curr. Appl. Phys., 10, 99 (2010).

[8] P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.J. Hwang, J.H. Choy, N. Munichandraiah, J. Phys. Chem. C, 113, 6303 (2009).

[9] S. Lee, M.S. Cho, J.D. Nam, Y. Lee, J. Nanosci. Nanotechnol., 8, 5036 (2008).

[10] J.F. Zang, S.J. Bao, C.M. Li, H.J. Bian, X.Q. Cui, Q.L. Bao, C.Q. Sun, J.Guo, K.R. Lian, J. Phys. Chem. C, 112, 14843 (2008).

[11] A.K. Geim, K.S. Novoselov, Nature Mater., 6, 183 (2007).

[12] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature, 446, 60 (2007) .

[13] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science, 315, 490 (2007).

[14] X. Wang, L.J. Zhi, K. Müllen, Nano Lett., 8, 323 (2008).

[15] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature , 442, 282 (2006).

[16] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008).

[17] Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen J. Phys. Chem. C, 113, 13103 (2009). 

[18] Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon, 48, 2118 (2010).

[19] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Chem. Mater., 22, 1392 (2010).

[20] D.W. Wang, F. Li, J.P. Zhao, W.C. Ren, Z.G .Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Chen, ACS Nano., 3, 1745 (2009).

[21] H.L. Wang, Q.L. Hao, X.J. Yang, L.D. Lu, X. Wang, Electrochem. Commun., 11, 1158 (2009).

[22] J .Yan, T. Wei, B. Shao, Z.J. Fan, W.Z. Qian, M.L. Zhang, F. Wei, Carbon, 48, 487 (2010).

[23] J. Yan, T. Wei, Z.J. Fan, W.Z. Qian, M.L. Zhang, F. Wei, J. Power Sources, 195, 3041 (2010).

[24] S.J. Park, R.S. Ruoff, Nat. Nanotech., 4, 217 (2010).

[25] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon, 45, 1558 (2007).

[26] G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Carbon, 43, 641 (2005).

[27] T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany. Chem. Mater., 8, 2740 (2006).

[28] C. Nethravathi, M. Rajamathi, Carbon, 46, 11994 (2008).

[29] Y.C. Liu, Y.T. Lin, J. Phys. Chem. B, 107, 11370 (2003).

[30] W. Zhang, X. Wen, S. Yang, Langmuir ,19, 4420. (2003)

[31] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater., 3, 771 (1999).