Flow Rate Effect on Methanol Electro-oxidation in a Microfluidic Laminar Flow System

Flow Rate Effect on Methanol Electro-oxidation in a Microfluidic Laminar Flow System

Isaac SpraguePrashanta Dutta Su Ha 

School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920

School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710

Page: 
305-313
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.133
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The effect of flow rate on the methanol electro-oxidation reaction in laminar flow was investigated using a direct methanol laminar flow fuel cell (LF-FC). A micro fuel cell was fabricated in polydimethylsiloxane using standard soft-lithography techniques. The electrochemical performance of methanol oxidation was characterized by anode polarization and electrochemical impedance spectroscopy analysis with and without sulfuric acid. The results show that in the absence of a sulfuric acid electrolyte (H2SO4) the methanol flow rate significantly influences methanol oxidation kinetics of the laminar flow direct methanol fuel cell. In the absence of H2SO4, it was found that the charge transfer resistance and onset potential of the methanol oxidation reaction significantly increases as the methanol flow rate increases. As a result, the anode current density of LF-FCs decreases at higher flow rates of methanol. However, this negative effect was reduced when a strong electrolyte, such as sulfuric acid, was mixed with the methanol solution.

  References

[1] J. D. Morse, Int. J. Energy Res., 31, 576 (2007).

[2] R. Ferrigno, A. D. Stroock, T. D Clark, M. Mayer, G. M. Whitesides, J. Am. Chem. Soc., 124, 12930 (2002).

[3] E. R. Choban, P. Waszczuk, L. J. Markoski, A. Wieckowski, P. J. A. Kenis, J. of Power Sources, 128, 54 (2004).

[4] J. L. Cohen, D. A. Westly, A. Pechenik, H. D. Abruna, J. of Power Sources, 139, 96 (2005).

[5] S. Hasegawa, K. Shimotani, K. Kishi, H. Watanabe, Electrochemical and Solid-State Letters, 8, A119 (2005).

[6] J. L. Cohen, D. J. Volpe, D. A. Westly, A. Pechenik, H. D. Abruna , Langmuir, 21, 3544 (2005).

[7] E. R. Choban, J. S. Spendelow, L. Gancs, A. Wieckowski, P. J. A. Kenis, Electrochimica Acta, 50, 5390 (2005).

[8] E. Kjeang, A. G. Brolo, D. A. Harrington, N. Djilali, D. Sinton, J. of The Electrochemical Society, 154, B1220 (2007).

[9] E. Kjeang, B. T. Proctor, A. G. Brolo, D. A. Harrington, N. Djilali, D. Sinton, Electrochimica Acta, 52, 4942 (2007).

[10] R. S Jayashree, L. Gancs, E. R. Choban, A. Primak, D. Natarajan, L. J. Markoski, P. J. A. Kenis, J. Am. Chem. Soc., 127, 16758 (2005).

[11] R. S. Jayashree, D. Egas, J. S. Spendelow, D. Natarajan, L. J. Markoski, P. J. A. Kenis, Electrolyte Electrochemical and Solid-State Letters, 9, A252 (2006).

[12] M. H. Sun G. Velve Casquilas, S. S. Guo, J. Shi, H. Ji, Q. Ouyang, Y. Chen, Microelectronic Engineering, 84, 1182 (2007).

[13] E. Kjeang, J. McKechnie, D. Sinton, N. Djilali, J. of Power Sources, 168, 379 (2007).

[14] E. Kjeang, R. Michel, D. A. Harrington, N. Djilali, and D. Sinton, J. Am. Chem. Soc., 130, 4000 (2008).

[15] E. R. Choban, P. Waszczuk, P. J. A. Kenis, Electrochemical and Solid-State Letters 8, A348 (2005).

[16] K. G. Lim, G. Tayhas, R. Palmore, Biosensors and Bioelectronics, 22, 941 (2007).

[17] J. Zhang, Y. Tang, C. Song, J. of Power Sources, 163, 532 (2006).

[18] W. Jung, J. Han, S. Ha, J. of Power Sources, 173, 53 (2007).

[19] J. Qiao, M. Saito, K. Hayamizu, J. Electrochem. Soc., 153, A967 (2006).

[20] W. Chen, G. Sun, J. Guo, X. Zhao, S. Yan, J. Tian, S. Tang, Z. Zhou, Q. Xin, Electrochim. Acta, 51, 2391 (2006).

[21] K. Furukawa, K. Okajima, M. Sudoh, J. of Power Sources, 139, 9 (2005).

[22] T. Abe, H. Shima, K. Watanabe, Y. Ito, J. Electrochem. Soc., 151, A101 (2004).

[23] M. Chang, F. Chen, N. Fang, J. of Power Sources, 159, 810 (2006).

[24] R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, Appl. Phys. Lett., 76, 2376 (2000).

[25] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications Second Edition, Wiley Inter-Science, New Jersey, 2005, pp 99.

[26] G. Prentice, Electrochemical Engineering Principles, Prentice-Hall, New Jersey, 1991.

[27] J. Newman, K. E. Thomas-Alyea, Electrochemical Systems Third Edition, Wiley Inter-Science , New Jersey, 2004, pp 276.

[28] J. Bockris, A. K. N. Reddy, Modern Electrochemistry; an Introduction to an Iinterdisciplinary Area, Plenum Press, New York, 1970.